GSS-RiskAsser: A Multi-Modal Deep-Learning Framework for Urban Gas Supply System Risk Assessment on Business Users
Gas supply system risk assessment is a serious and important problem in cities. Existing methods tend to manually build mathematical models to predict risk value from single-modal information, i.e., pipeline parameters. In this paper, we attempt to consider this problem from a deep-learning perspect...
Guardado en:
Autores principales: | Xuefei Li, Liangtu Song, Liu Liu, Linli Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ecc1a3b6fcf4264bcc4626b768de9de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
por: Jiajia Wu, et al.
Publicado: (2021) -
Multi-modal Deep Learning and Its Applications in Ophthalmic Artificial Intelligence
por: LI Xirong
Publicado: (2021) -
Prediction of Protein–Protein Interaction Sites Based on Stratified Attentional Mechanisms
por: Minli Tang, et al.
Publicado: (2021) -
Cross-Modal Guidance Assisted Hierarchical Learning Based Siamese Network for MR Image Denoising
por: Rabia Naseem, et al.
Publicado: (2021) -
Multi-Modal Image Fusion Based on Matrix Product State of Tensor
por: Yixiang Lu, et al.
Publicado: (2021)