CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation
Abstract Medical image segmentation of tissue abnormalities, key organs, or blood vascular system is of great significance for any computerized diagnostic system. However, automatic segmentation in medical image analysis is a challenging task since it requires sophisticated knowledge of the target o...
Guardado en:
Autores principales: | Mohammed A. Al-masni, Dong-Hyun Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ecd304622bb4e2e98a20482db384238 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-level dilated residual network for biomedical image segmentation
por: Naga Raju Gudhe, et al.
Publicado: (2021) -
HPS-Net: Multi-Task Network for Medical Image Segmentation with Predictable Performance
por: Xin Wei, et al.
Publicado: (2021) -
GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
por: Udit Sharma, et al.
Publicado: (2021) -
Accurate pancreas segmentation using multi-level pyramidal pooling residual U-Net with adversarial mechanism
por: Meiyu Li, et al.
Publicado: (2021) -
Efficient, high-performance semantic segmentation using multi-scale feature extraction.
por: Moritz Knolle, et al.
Publicado: (2021)