CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation
In this work, we propose a construction of 2-round tweakable substitutionpermutation networks using a single secret S-box. This construction is based on non-linear permutation layers using independent round keys, and achieves security beyond the birthday bound in the random permutation model. When...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Ruhr-Universität Bochum
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2edadb90ee6c48bebdfd14200ff2bf8d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2edadb90ee6c48bebdfd14200ff2bf8d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2edadb90ee6c48bebdfd14200ff2bf8d2021-12-03T14:38:30ZCTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation10.46586/tosc.v2021.i4.1-352519-173Xhttps://doaj.org/article/2edadb90ee6c48bebdfd14200ff2bf8d2021-12-01T00:00:00Zhttps://tosc.iacr.org/index.php/ToSC/article/view/9327https://doaj.org/toc/2519-173X In this work, we propose a construction of 2-round tweakable substitutionpermutation networks using a single secret S-box. This construction is based on non-linear permutation layers using independent round keys, and achieves security beyond the birthday bound in the random permutation model. When instantiated with an n-bit block cipher with ωn-bit keys, the resulting tweakable block cipher, dubbed CTET+, can be viewed as a tweakable enciphering scheme that encrypts ωκ-bit messages for any integer ω ≥ 2 using 5n + κ-bit keys and n-bit tweaks, providing 2n/3-bit security. Compared to the 2-round non-linear SPN analyzed in [CDK+18], we both minimize it by requiring a single permutation, and weaken the requirements on the middle linear layer, allowing better performance. As a result, CTET+ becomes the first tweakable enciphering scheme that provides beyond-birthday-bound security using a single permutation, while its efficiency is still comparable to existing schemes including AES-XTS, EME, XCB and TET. Furthermore, we propose a new tweakable enciphering scheme, dubbed AES6-CTET+, which is an actual instantiation of CTET+ using a reduced round AES block cipher as the underlying secret S-box. Extensive cryptanalysis of this algorithm allows us to claim 127 bits of security. Such tweakable enciphering schemes with huge block sizes become desirable in the context of disk encryption, since processing a whole sector as a single block significantly worsens the granularity for attackers when compared to, for example, AES-XTS, which treats every 16-byte block on the disk independently. Besides, as a huge amount of data is being stored and encrypted at rest under many different keys in clouds, beyond-birthday-bound security will most likely become necessary in the short term. Benoît CogliatiJordan EthanVirginie LallemandByeonghak LeeJooyoung LeeMarine MinierRuhr-Universität Bochumarticletweakable enciphering modeSPNbeyond-birthday-bound securityComputer engineering. Computer hardwareTK7885-7895ENIACR Transactions on Symmetric Cryptology, Vol 2021, Iss 4 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
tweakable enciphering mode SPN beyond-birthday-bound security Computer engineering. Computer hardware TK7885-7895 |
spellingShingle |
tweakable enciphering mode SPN beyond-birthday-bound security Computer engineering. Computer hardware TK7885-7895 Benoît Cogliati Jordan Ethan Virginie Lallemand Byeonghak Lee Jooyoung Lee Marine Minier CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation |
description |
In this work, we propose a construction of 2-round tweakable substitutionpermutation networks using a single secret S-box. This construction is based on non-linear permutation layers using independent round keys, and achieves security beyond the birthday bound in the random permutation model. When instantiated with an n-bit block cipher with ωn-bit keys, the resulting tweakable block cipher, dubbed CTET+, can be viewed as a tweakable enciphering scheme that encrypts ωκ-bit messages for any integer ω ≥ 2 using 5n + κ-bit keys and n-bit tweaks, providing 2n/3-bit security.
Compared to the 2-round non-linear SPN analyzed in [CDK+18], we both minimize it by requiring a single permutation, and weaken the requirements on the middle linear layer, allowing better performance. As a result, CTET+ becomes the first tweakable enciphering scheme that provides beyond-birthday-bound security using a single permutation, while its efficiency is still comparable to existing schemes including AES-XTS, EME, XCB and TET. Furthermore, we propose a new tweakable enciphering scheme, dubbed AES6-CTET+, which is an actual instantiation of CTET+ using a reduced round AES block cipher as the underlying secret S-box. Extensive
cryptanalysis of this algorithm allows us to claim 127 bits of security.
Such tweakable enciphering schemes with huge block sizes become desirable in the context of disk encryption, since processing a whole sector as a single block significantly worsens the granularity for attackers when compared to, for example, AES-XTS, which treats every 16-byte block on the disk independently. Besides, as a huge amount of data is being stored and encrypted at rest under many different keys in clouds, beyond-birthday-bound security will most likely become necessary in the short term.
|
format |
article |
author |
Benoît Cogliati Jordan Ethan Virginie Lallemand Byeonghak Lee Jooyoung Lee Marine Minier |
author_facet |
Benoît Cogliati Jordan Ethan Virginie Lallemand Byeonghak Lee Jooyoung Lee Marine Minier |
author_sort |
Benoît Cogliati |
title |
CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation |
title_short |
CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation |
title_full |
CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation |
title_fullStr |
CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation |
title_full_unstemmed |
CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation |
title_sort |
ctet+: a beyond-birthday-bound secure tweakable enciphering scheme using a single pseudorandom permutation |
publisher |
Ruhr-Universität Bochum |
publishDate |
2021 |
url |
https://doaj.org/article/2edadb90ee6c48bebdfd14200ff2bf8d |
work_keys_str_mv |
AT benoitcogliati ctetabeyondbirthdayboundsecuretweakableencipheringschemeusingasinglepseudorandompermutation AT jordanethan ctetabeyondbirthdayboundsecuretweakableencipheringschemeusingasinglepseudorandompermutation AT virginielallemand ctetabeyondbirthdayboundsecuretweakableencipheringschemeusingasinglepseudorandompermutation AT byeonghaklee ctetabeyondbirthdayboundsecuretweakableencipheringschemeusingasinglepseudorandompermutation AT jooyounglee ctetabeyondbirthdayboundsecuretweakableencipheringschemeusingasinglepseudorandompermutation AT marineminier ctetabeyondbirthdayboundsecuretweakableencipheringschemeusingasinglepseudorandompermutation |
_version_ |
1718373136841310208 |