Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making

Abstract During decisions, animals balance goal achievement and effort management. Despite physical exercise and fatigue significantly affecting the levels of effort that an animal exerts to obtain a reward, their role in effort-based choice and the underlying neurochemistry are incompletely known....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pierpaolo Iodice, Claudio Ferrante, Luigi Brunetti, Simona Cabib, Feliciano Protasi, Mark E. Walton, Giovanni Pezzulo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2edf0178c2a54124bda882e598b38c8a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2edf0178c2a54124bda882e598b38c8a
record_format dspace
spelling oai:doaj.org-article:2edf0178c2a54124bda882e598b38c8a2021-12-02T16:08:07ZFatigue modulates dopamine availability and promotes flexible choice reversals during decision making10.1038/s41598-017-00561-62045-2322https://doaj.org/article/2edf0178c2a54124bda882e598b38c8a2017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00561-6https://doaj.org/toc/2045-2322Abstract During decisions, animals balance goal achievement and effort management. Despite physical exercise and fatigue significantly affecting the levels of effort that an animal exerts to obtain a reward, their role in effort-based choice and the underlying neurochemistry are incompletely known. In particular, it is unclear whether fatigue influences decision (cost-benefit) strategies flexibly or only post-decision action execution and learning. To answer this question, we trained mice on a T-maze task in which they chose between a high-cost, high-reward arm (HR), which included a barrier, and a low-cost, low-reward arm (LR), with no barrier. The animals were parametrically fatigued immediately before the behavioural tasks by running on a treadmill. We report a sharp choice reversal, from the HR to LR arm, at 80% of their peak workload (PW), which was temporary and specific, as the mice returned to choose the HC when the animals were successively tested at 60% PW or in a two-barrier task. These rapid reversals are signatures of flexible choice. We also observed increased subcortical dopamine levels in fatigued mice: a marker of individual bias to use model-based control in humans. Our results indicate that fatigue levels can be incorporated in flexible cost-benefits computations that improve foraging efficiency.Pierpaolo IodiceClaudio FerranteLuigi BrunettiSimona CabibFeliciano ProtasiMark E. WaltonGiovanni PezzuloNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Pierpaolo Iodice
Claudio Ferrante
Luigi Brunetti
Simona Cabib
Feliciano Protasi
Mark E. Walton
Giovanni Pezzulo
Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making
description Abstract During decisions, animals balance goal achievement and effort management. Despite physical exercise and fatigue significantly affecting the levels of effort that an animal exerts to obtain a reward, their role in effort-based choice and the underlying neurochemistry are incompletely known. In particular, it is unclear whether fatigue influences decision (cost-benefit) strategies flexibly or only post-decision action execution and learning. To answer this question, we trained mice on a T-maze task in which they chose between a high-cost, high-reward arm (HR), which included a barrier, and a low-cost, low-reward arm (LR), with no barrier. The animals were parametrically fatigued immediately before the behavioural tasks by running on a treadmill. We report a sharp choice reversal, from the HR to LR arm, at 80% of their peak workload (PW), which was temporary and specific, as the mice returned to choose the HC when the animals were successively tested at 60% PW or in a two-barrier task. These rapid reversals are signatures of flexible choice. We also observed increased subcortical dopamine levels in fatigued mice: a marker of individual bias to use model-based control in humans. Our results indicate that fatigue levels can be incorporated in flexible cost-benefits computations that improve foraging efficiency.
format article
author Pierpaolo Iodice
Claudio Ferrante
Luigi Brunetti
Simona Cabib
Feliciano Protasi
Mark E. Walton
Giovanni Pezzulo
author_facet Pierpaolo Iodice
Claudio Ferrante
Luigi Brunetti
Simona Cabib
Feliciano Protasi
Mark E. Walton
Giovanni Pezzulo
author_sort Pierpaolo Iodice
title Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making
title_short Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making
title_full Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making
title_fullStr Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making
title_full_unstemmed Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making
title_sort fatigue modulates dopamine availability and promotes flexible choice reversals during decision making
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/2edf0178c2a54124bda882e598b38c8a
work_keys_str_mv AT pierpaoloiodice fatiguemodulatesdopamineavailabilityandpromotesflexiblechoicereversalsduringdecisionmaking
AT claudioferrante fatiguemodulatesdopamineavailabilityandpromotesflexiblechoicereversalsduringdecisionmaking
AT luigibrunetti fatiguemodulatesdopamineavailabilityandpromotesflexiblechoicereversalsduringdecisionmaking
AT simonacabib fatiguemodulatesdopamineavailabilityandpromotesflexiblechoicereversalsduringdecisionmaking
AT felicianoprotasi fatiguemodulatesdopamineavailabilityandpromotesflexiblechoicereversalsduringdecisionmaking
AT markewalton fatiguemodulatesdopamineavailabilityandpromotesflexiblechoicereversalsduringdecisionmaking
AT giovannipezzulo fatiguemodulatesdopamineavailabilityandpromotesflexiblechoicereversalsduringdecisionmaking
_version_ 1718384584938225664