Early triage of critically ill COVID-19 patients using deep learning
The sudden deterioration of patients with novel coronavirus disease 2019 (COVID-19) into critical illness is of major concern and early assessment would be vital. Here, the authors show that a deep learning-based survival model can predict the risk of COVID-19 patients developing critical illness ba...
Guardado en:
Autores principales: | Wenhua Liang, Jianhua Yao, Ailan Chen, Qingquan Lv, Mark Zanin, Jun Liu, SookSan Wong, Yimin Li, Jiatao Lu, Hengrui Liang, Guoqiang Chen, Haiyan Guo, Jun Guo, Rong Zhou, Limin Ou, Niyun Zhou, Hanbo Chen, Fan Yang, Xiao Han, Wenjing Huan, Weimin Tang, Weijie Guan, Zisheng Chen, Yi Zhao, Ling Sang, Yuanda Xu, Wei Wang, Shiyue Li, Ligong Lu, Nuofu Zhang, Nanshan Zhong, Junzhou Huang, Jianxing He |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ee4dd97fb1f4849aebac304d8ba36b8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Addendum: Early triage of critically ill COVID-19 patients using deep learning
por: Wenhua Liang, et al.
Publicado: (2021) -
AI-based analysis of CT images for rapid triage of COVID-19 patients
por: Qinmei Xu, et al.
Publicado: (2021) -
Triaging and referring in adjacent general and emergency departments (the TRIAGE trial): A cluster randomised controlled trial.
por: Stefan Morreel, et al.
Publicado: (2021) -
Pediatric triage variations among nurses, pediatric and emergency residents using the Canadian triage and acuity scale
por: Saleh Alshaibi, et al.
Publicado: (2021) -
Triaging and referring in adjacent general and emergency departments (the TRIAGE trial): A cluster randomised controlled trial
por: Stefan Morreel, et al.
Publicado: (2021)