AUBER: Automated BERT regularization.
How can we effectively regularize BERT? Although BERT proves its effectiveness in various NLP tasks, it often overfits when there are only a small number of training instances. A promising direction to regularize BERT is based on pruning its attention heads with a proxy score for head importance. Ho...
Guardado en:
Autores principales: | Hyun Dong Lee, Seongmin Lee, U Kang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ef6b30e26174d40a39937b0fed7747f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Relation classification via BERT with piecewise convolution and focal loss.
por: Jianyi Liu, et al.
Publicado: (2021) -
D‐BERT: Incorporating dependency‐based attention into BERT for relation extraction
por: Yuan Huang, et al.
Publicado: (2021) -
Multi-EPL: Accurate multi-source domain adaptation.
por: Seongmin Lee, et al.
Publicado: (2021) -
Unsupervised multi-source domain adaptation with no observable source data.
por: Hyunsik Jeon, et al.
Publicado: (2021) -
Sentence Compression Using BERT and Graph Convolutional Networks
por: Yo-Han Park, et al.
Publicado: (2021)