STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
The applied research in remote sensing images has been pushed by convolutional neural network (CNN). Because of the fixed size of the perceptual field, CNN is unable to model global semantic relevance. Modeling global semantic information is possible with the self-attentive Transformer-based model....
Guardado en:
Autores principales: | Liang Gao, Hui Liu, Minhang Yang, Long Chen, Yaling Wan, Zhengqing Xiao, Yurong Qian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2efddfdbdb5d4362b8201399ac39c380 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021) -
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
por: Chen Wang, et al.
Publicado: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
por: Lulu Wan, et al.
Publicado: (2021) -
Soil Moisture Active/Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration Revisit: Approach and Performance
por: Jinzheng Peng, et al.
Publicado: (2021) -
Urban Functional Zone Mapping With a Bibranch Neural Network via Fusing Remote Sensing and Social Sensing Data
por: Runyu Fan, et al.
Publicado: (2021)