Volumetric super-resolution imaging by serial ultrasectioning and stochastic optical reconstruction microscopy in mouse neural tissue
Summary: Here, we present a protocol for collecting large-volume, four-color, single-molecule localization imaging data from neural tissue. We have applied this technique to map the location and identities of chemical synapses across whole cells in mouse retinae. Our sample preparation approach impr...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2f090f4fe5694afe9a6c8349d4c2a85e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Summary: Here, we present a protocol for collecting large-volume, four-color, single-molecule localization imaging data from neural tissue. We have applied this technique to map the location and identities of chemical synapses across whole cells in mouse retinae. Our sample preparation approach improves 3D STORM image quality by reducing tissue scattering, photobleaching, and optical distortions associated with deep imaging. This approach can be extended for use on other tissue types enabling life scientists to perform volumetric super-resolution imaging in diverse biological models.For complete details on the use and execution of this protocol, please refer to Sigal et al. (2015). |
---|