An Analytical Solution for Non-Darcian Flow on a Constant Head Packer Test in the Interlayer Staggered Zone
Groundwater flow in an aquifer has frequently been found to be non-Darcian by performing in situ tests. A novel analytic model is proposed in this study for describing the unsteady non-Darcian flow in a confined aquifer by taking advantage of the observed flow rate and injection pressure during the...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2f0cfaaef59a45dca93fd69355c1390d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Groundwater flow in an aquifer has frequently been found to be non-Darcian by performing in situ tests. A novel analytic model is proposed in this study for describing the unsteady non-Darcian flow in a confined aquifer by taking advantage of the observed flow rate and injection pressure during the constant head packer test. A linearization approximation of the Izbash equation is used to approximate the nonlinear term in the governing equation. This analytic model is applied to describe the non-Darcian flow in the interlayer staggered zone at the Baihetan hydropower station, China. The test results inversed by the genetic algorithm show that non-Darcian flow happened during the test under the injection pressure 0.3 MPa with the power index n is 1.278, non-Darcian hydraulic conductivity k1 is 1.613×10−5 cm/s and the specific storage Ss is 9.757×10−5 m-1, respectively. The sensitivity analysis indicated that when the power index n or the specific storage Ss is larger, and the hydraulic head will increase more slowly and needs longer to stabilize, but the non-Darcian hydraulic conductivity k1 shows the opposite trend. Moreover, the hydraulic head is more sensitive to the power index n compared to other parameters at late times. The findings of this study reveal the non-Darcian flow during the constant head packer test and provide a simple and fast way to estimate parameters for more accurate seepage field simulation. |
---|