Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model

Somsubhra Thakur Choudhury,1 Nirmalendu Das,2 Swarupa Ghosh,2 Debasree Ghosh,2 Somsuta Chakraborty,2 Nahid Ali1 1Infectious Diseases and Immunology, 2Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India Abstract: The liver plays a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Choudhury ST, Das N, Ghosh S, Ghosh D, Chakraborty S, Ali N
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2016
Materias:
Acceso en línea:https://doaj.org/article/2f1b4b8eca1f46e982a59f317bf86df9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2f1b4b8eca1f46e982a59f317bf86df9
record_format dspace
spelling oai:doaj.org-article:2f1b4b8eca1f46e982a59f317bf86df92021-12-02T05:04:24ZVesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model1178-2013https://doaj.org/article/2f1b4b8eca1f46e982a59f317bf86df92016-05-01T00:00:00Zhttps://www.dovepress.com/vesicular-liposomal-and-nanoparticulated-delivery-of-curcumin-a-compar-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Somsubhra Thakur Choudhury,1 Nirmalendu Das,2 Swarupa Ghosh,2 Debasree Ghosh,2 Somsuta Chakraborty,2 Nahid Ali1 1Infectious Diseases and Immunology, 2Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India Abstract: The liver plays a vital role in biotransforming and extricating xenobiotics and is thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl4) causes hepatic inflammation by enhancing cellular reactive oxygen species (ROS) level, promoting mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its antioxidative and anti-inflammatory properties and can be considered as an effective therapeutic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticulated formulations of curcumin could increase its efficacy significantly against hepatotoxicity by preventing cellular oxidative stress. However, the best protection could be obtained through the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, nanoparticulated curcumin also significantly (P<0.0001) increased cellular antioxidant enzymes, averted excessive mitochondrial destruction, and prevented total liver damage in CCl4-treated rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal necrosis, and portal inflammation evident from the histopathological analysis. To conclude, curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal curcumin in preventing CCl4-induced oxidative stress–mediated hepatocellular damage and thereby can be considered as an effective therapeutic strategy. Keywords: reactive oxygen species, mitochondria, apoptosis, antioxidants, histopathology, Western blotChoudhury STDas NGhosh SGhosh DChakraborty SAli NDove Medical Pressarticlereactive oxygen speciesmitochondriaapoptosisantioxidantshistopathologywestern blotMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2016, Iss default, Pp 2179-2193 (2016)
institution DOAJ
collection DOAJ
language EN
topic reactive oxygen species
mitochondria
apoptosis
antioxidants
histopathology
western blot
Medicine (General)
R5-920
spellingShingle reactive oxygen species
mitochondria
apoptosis
antioxidants
histopathology
western blot
Medicine (General)
R5-920
Choudhury ST
Das N
Ghosh S
Ghosh D
Chakraborty S
Ali N
Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model
description Somsubhra Thakur Choudhury,1 Nirmalendu Das,2 Swarupa Ghosh,2 Debasree Ghosh,2 Somsuta Chakraborty,2 Nahid Ali1 1Infectious Diseases and Immunology, 2Drug Development, Diagnostics and Biotechnology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India Abstract: The liver plays a vital role in biotransforming and extricating xenobiotics and is thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl4) causes hepatic inflammation by enhancing cellular reactive oxygen species (ROS) level, promoting mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its antioxidative and anti-inflammatory properties and can be considered as an effective therapeutic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticulated formulations of curcumin could increase its efficacy significantly against hepatotoxicity by preventing cellular oxidative stress. However, the best protection could be obtained through the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, nanoparticulated curcumin also significantly (P<0.0001) increased cellular antioxidant enzymes, averted excessive mitochondrial destruction, and prevented total liver damage in CCl4-treated rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal necrosis, and portal inflammation evident from the histopathological analysis. To conclude, curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal curcumin in preventing CCl4-induced oxidative stress–mediated hepatocellular damage and thereby can be considered as an effective therapeutic strategy. Keywords: reactive oxygen species, mitochondria, apoptosis, antioxidants, histopathology, Western blot
format article
author Choudhury ST
Das N
Ghosh S
Ghosh D
Chakraborty S
Ali N
author_facet Choudhury ST
Das N
Ghosh S
Ghosh D
Chakraborty S
Ali N
author_sort Choudhury ST
title Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model
title_short Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model
title_full Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model
title_fullStr Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model
title_full_unstemmed Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model
title_sort vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model
publisher Dove Medical Press
publishDate 2016
url https://doaj.org/article/2f1b4b8eca1f46e982a59f317bf86df9
work_keys_str_mv AT choudhuryst vesicularliposomalandnanoparticulateddeliveryofcurcuminacomparativestudyoncarbontetrachloridendashmediatedoxidativehepatocellulardamageinratmodel
AT dasn vesicularliposomalandnanoparticulateddeliveryofcurcuminacomparativestudyoncarbontetrachloridendashmediatedoxidativehepatocellulardamageinratmodel
AT ghoshs vesicularliposomalandnanoparticulateddeliveryofcurcuminacomparativestudyoncarbontetrachloridendashmediatedoxidativehepatocellulardamageinratmodel
AT ghoshd vesicularliposomalandnanoparticulateddeliveryofcurcuminacomparativestudyoncarbontetrachloridendashmediatedoxidativehepatocellulardamageinratmodel
AT chakrabortys vesicularliposomalandnanoparticulateddeliveryofcurcuminacomparativestudyoncarbontetrachloridendashmediatedoxidativehepatocellulardamageinratmodel
AT alin vesicularliposomalandnanoparticulateddeliveryofcurcuminacomparativestudyoncarbontetrachloridendashmediatedoxidativehepatocellulardamageinratmodel
_version_ 1718400640521076736