Nanocrystalline coatings on superalloys against high temperature oxidation: A review
To enhance oxidation resistance for industry applications, aluminides and overlaying MCrAlY or intermetallic β-NiAl coatings are the commonly used high temperature protective coatings for superalloys. However, they all face a serious problem with regard to interdiffusion with the underlying superall...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2f1f1e7bb8b94742854fca09cbeada3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2f1f1e7bb8b94742854fca09cbeada3e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2f1f1e7bb8b94742854fca09cbeada3e2021-12-03T04:01:32ZNanocrystalline coatings on superalloys against high temperature oxidation: A review2667-266910.1016/j.corcom.2021.06.003https://doaj.org/article/2f1f1e7bb8b94742854fca09cbeada3e2021-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2667266921000074https://doaj.org/toc/2667-2669To enhance oxidation resistance for industry applications, aluminides and overlaying MCrAlY or intermetallic β-NiAl coatings are the commonly used high temperature protective coatings for superalloys. However, they all face a serious problem with regard to interdiffusion with the underlying superalloy substrates. Since the sputtered microcrystalline coating of superalloy K38G for the purpose of oxidation protection was firstly reported in 1992, extensive studies have been conducted on its extension and application for different substrate materials, such as superalloys and intermetallic compounds. In addition to good oxidation protection, sputtered nanocrystalline coatings avoid interdiffusion with the alloy substrates. A more attractive merit of sputtered nanocrystalline coating is that due to the columnar structure, the thermal or growth stresses transported from oxide scale will be easily relaxed by deformation of the nanocrystalline coating, rather than by cracking of the oxide scale. This paper reviews recent progress on nanocrystalline coatings formed on substrates from poly-crystal to single-crystal alloys. The focus is to uptake the mechanisms of high temperature protective properties and to introduce microstructural and functional changes of nanocrystalline coatings.Jinlong WangMinghui ChenLanlan YangWenyao SunShenglong ZhuFuhui WangElsevierarticleSuperalloyMetal coatingHot corrosionOxidationMaterials of engineering and construction. Mechanics of materialsTA401-492ENCorrosion Communications, Vol 1, Iss , Pp 58-69 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Superalloy Metal coating Hot corrosion Oxidation Materials of engineering and construction. Mechanics of materials TA401-492 |
spellingShingle |
Superalloy Metal coating Hot corrosion Oxidation Materials of engineering and construction. Mechanics of materials TA401-492 Jinlong Wang Minghui Chen Lanlan Yang Wenyao Sun Shenglong Zhu Fuhui Wang Nanocrystalline coatings on superalloys against high temperature oxidation: A review |
description |
To enhance oxidation resistance for industry applications, aluminides and overlaying MCrAlY or intermetallic β-NiAl coatings are the commonly used high temperature protective coatings for superalloys. However, they all face a serious problem with regard to interdiffusion with the underlying superalloy substrates. Since the sputtered microcrystalline coating of superalloy K38G for the purpose of oxidation protection was firstly reported in 1992, extensive studies have been conducted on its extension and application for different substrate materials, such as superalloys and intermetallic compounds. In addition to good oxidation protection, sputtered nanocrystalline coatings avoid interdiffusion with the alloy substrates. A more attractive merit of sputtered nanocrystalline coating is that due to the columnar structure, the thermal or growth stresses transported from oxide scale will be easily relaxed by deformation of the nanocrystalline coating, rather than by cracking of the oxide scale. This paper reviews recent progress on nanocrystalline coatings formed on substrates from poly-crystal to single-crystal alloys. The focus is to uptake the mechanisms of high temperature protective properties and to introduce microstructural and functional changes of nanocrystalline coatings. |
format |
article |
author |
Jinlong Wang Minghui Chen Lanlan Yang Wenyao Sun Shenglong Zhu Fuhui Wang |
author_facet |
Jinlong Wang Minghui Chen Lanlan Yang Wenyao Sun Shenglong Zhu Fuhui Wang |
author_sort |
Jinlong Wang |
title |
Nanocrystalline coatings on superalloys against high temperature oxidation: A review |
title_short |
Nanocrystalline coatings on superalloys against high temperature oxidation: A review |
title_full |
Nanocrystalline coatings on superalloys against high temperature oxidation: A review |
title_fullStr |
Nanocrystalline coatings on superalloys against high temperature oxidation: A review |
title_full_unstemmed |
Nanocrystalline coatings on superalloys against high temperature oxidation: A review |
title_sort |
nanocrystalline coatings on superalloys against high temperature oxidation: a review |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/2f1f1e7bb8b94742854fca09cbeada3e |
work_keys_str_mv |
AT jinlongwang nanocrystallinecoatingsonsuperalloysagainsthightemperatureoxidationareview AT minghuichen nanocrystallinecoatingsonsuperalloysagainsthightemperatureoxidationareview AT lanlanyang nanocrystallinecoatingsonsuperalloysagainsthightemperatureoxidationareview AT wenyaosun nanocrystallinecoatingsonsuperalloysagainsthightemperatureoxidationareview AT shenglongzhu nanocrystallinecoatingsonsuperalloysagainsthightemperatureoxidationareview AT fuhuiwang nanocrystallinecoatingsonsuperalloysagainsthightemperatureoxidationareview |
_version_ |
1718373922638921728 |