Plant phenomics & precision agriculture simulation of winter wheat growth by the assimilation of unmanned aerial vehicle imagery into the WOFOST model.
The aim of this study is to optimize the simulation result of the WOFOST model and explore the possibility of assimilating unmanned aerial vehicle (UAV) imagery into this model. Field images of wheat during its key growth stages are acquired with a UAV, and the corresponding leaf area index (LAI), b...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2f2223d7faa04609b0d85238dd222009 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The aim of this study is to optimize the simulation result of the WOFOST model and explore the possibility of assimilating unmanned aerial vehicle (UAV) imagery into this model. Field images of wheat during its key growth stages are acquired with a UAV, and the corresponding leaf area index (LAI), biomass, and final yield are experimentally measured. LAI data is retrieved from the UAV imagery and assimilated into a localized WOFOST model using least squares optimization. Sensitive parameters, i.e., specific leaf area (SLATB0, SLATB0.5, SLATB2) and maximum CO2 assimilation rate (AMAXTB1, AMAXTB1.3) are adjusted to minimize the discrepancy between the LAI obtained from the model simulation and inversion of the UAV data. The results show that the assimilated model provides a better estimation of the growth and development of winter wheat in the study area. The R2, RMSE, and NRMSE of winter wheat LAI simulated with the assimilated WOFOST model are 0.8812, 0.49, and 23.5% respectively. The R2, RMSE, and NRMSE of the simulated yield are 0.9489, 327.06 kg·hm-2, and 6.5%. The accuracy in model simulation of winter wheat growth is improved, which demonstrates the feasibility of integrating UAV data into crop models. |
---|