Slow manifolds within network dynamics encode working memory efficiently and robustly.
Working memory is a cognitive function involving the storage and manipulation of latent information over brief intervals of time, thus making it crucial for context-dependent computation. Here, we use a top-down modeling approach to examine network-level mechanisms of working memory, an enigmatic is...
Guardado en:
Autores principales: | Elham Ghazizadeh, ShiNung Ching |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2f274d172787454d833548af91935355 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory
por: B. Berger, et al.
Publicado: (2019) -
Dynamic network coding of working-memory domains and working-memory processes
por: Eyal Soreq, et al.
Publicado: (2019) -
Crows control working memory before and after stimulus encoding
por: Erica Fongaro, et al.
Publicado: (2020) -
Multimodal network dynamics underpinning working memory
por: Andrew C. Murphy, et al.
Publicado: (2020) -
A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
por: Viktoria Schuster, et al.
Publicado: (2021)