RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites
Abstract RNA and protein interactions play crucial roles in multiple biological processes, while these interactions are significantly influenced by the structures and sequences of protein and RNA molecules. In this study, we first performed an analysis of RNA-protein interacting complexes, and ident...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2f4e8eb227b045399e1f4b448d66fc44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2f4e8eb227b045399e1f4b448d66fc44 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2f4e8eb227b045399e1f4b448d66fc442021-12-02T16:06:50ZRPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites10.1038/s41598-017-00795-42045-2322https://doaj.org/article/2f4e8eb227b045399e1f4b448d66fc442017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00795-4https://doaj.org/toc/2045-2322Abstract RNA and protein interactions play crucial roles in multiple biological processes, while these interactions are significantly influenced by the structures and sequences of protein and RNA molecules. In this study, we first performed an analysis of RNA-protein interacting complexes, and identified interface properties of sequences and structures, which reveal the diverse nature of the binding sites. With the observations, we built a three-step prediction model, namely RPI-Bind, for the identification of RNA-protein binding regions using the sequences and structures of both proteins and RNAs. The three steps include 1) the prediction of RNA binding regions on protein, 2) the prediction of protein binding regions on RNA, and 3) the prediction of interacting regions on both RNA and protein simultaneously, with the results from steps 1) and 2). Compared with existing methods, most of which employ only sequences, our model significantly improves the prediction accuracy at each of the three steps. Especially, our model outperforms the catRAPID by >20% at the 3rd step. All of these results indicate the importance of structures in RNA-protein interactions, and suggest that the RPI-Bind model is a powerful theoretical framework for studying RNA-protein interactions.Jiesi LuoLiang LiuSuresh VenkateswaranQianqian SongXiaobo ZhouNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jiesi Luo Liang Liu Suresh Venkateswaran Qianqian Song Xiaobo Zhou RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites |
description |
Abstract RNA and protein interactions play crucial roles in multiple biological processes, while these interactions are significantly influenced by the structures and sequences of protein and RNA molecules. In this study, we first performed an analysis of RNA-protein interacting complexes, and identified interface properties of sequences and structures, which reveal the diverse nature of the binding sites. With the observations, we built a three-step prediction model, namely RPI-Bind, for the identification of RNA-protein binding regions using the sequences and structures of both proteins and RNAs. The three steps include 1) the prediction of RNA binding regions on protein, 2) the prediction of protein binding regions on RNA, and 3) the prediction of interacting regions on both RNA and protein simultaneously, with the results from steps 1) and 2). Compared with existing methods, most of which employ only sequences, our model significantly improves the prediction accuracy at each of the three steps. Especially, our model outperforms the catRAPID by >20% at the 3rd step. All of these results indicate the importance of structures in RNA-protein interactions, and suggest that the RPI-Bind model is a powerful theoretical framework for studying RNA-protein interactions. |
format |
article |
author |
Jiesi Luo Liang Liu Suresh Venkateswaran Qianqian Song Xiaobo Zhou |
author_facet |
Jiesi Luo Liang Liu Suresh Venkateswaran Qianqian Song Xiaobo Zhou |
author_sort |
Jiesi Luo |
title |
RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites |
title_short |
RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites |
title_full |
RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites |
title_fullStr |
RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites |
title_full_unstemmed |
RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites |
title_sort |
rpi-bind: a structure-based method for accurate identification of rna-protein binding sites |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/2f4e8eb227b045399e1f4b448d66fc44 |
work_keys_str_mv |
AT jiesiluo rpibindastructurebasedmethodforaccurateidentificationofrnaproteinbindingsites AT liangliu rpibindastructurebasedmethodforaccurateidentificationofrnaproteinbindingsites AT sureshvenkateswaran rpibindastructurebasedmethodforaccurateidentificationofrnaproteinbindingsites AT qianqiansong rpibindastructurebasedmethodforaccurateidentificationofrnaproteinbindingsites AT xiaobozhou rpibindastructurebasedmethodforaccurateidentificationofrnaproteinbindingsites |
_version_ |
1718384833061715968 |