Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system

Introduction: Pistachio nut is one of the most important agricultural products of Iran and it is priced due to the quality and type. One of the significant factors of pistachio cost is its type in terms of shell. Filled split pistachio nut has the most quality and is utilized as nuts, while the clos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. R Abdollahnejad Barough, M Adelinia, M Mohamadi
Formato: article
Lenguaje:EN
FA
Publicado: Ferdowsi University of Mashhad 2016
Materias:
Acceso en línea:https://doaj.org/article/2f651300139a4716a976dea091e8630e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2f651300139a4716a976dea091e8630e
record_format dspace
institution DOAJ
collection DOAJ
language EN
FA
topic algorithm c4.5
image processing
neuro-fuzzy system
pistachios classification
Agriculture (General)
S1-972
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle algorithm c4.5
image processing
neuro-fuzzy system
pistachios classification
Agriculture (General)
S1-972
Engineering (General). Civil engineering (General)
TA1-2040
A. R Abdollahnejad Barough
M Adelinia
M Mohamadi
Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system
description Introduction: Pistachio nut is one of the most important agricultural products of Iran and it is priced due to the quality and type. One of the significant factors of pistachio cost is its type in terms of shell. Filled split pistachio nut has the most quality and is utilized as nuts, while the closed shell type has lower cost, at the same time is economically efficient in food industry such as confectionery. Now, pistachio sorting is performed usually by human and sometimes using electromechanical apparatuses. Classification of pistachio by human is time consuming and is done with an unacceptable accuracy, on the other hand, electromechanical and electro optical apparatuses damages pistachio because the mechanism used in them while separating. So, the need to develop automated systems that could be implemented by intelligent ways is evident to increase the speed and accuracy of classification. Materials and Methods: In this study, 300 samples of pistachios contains 100 Filled split, 100 Filled non-split and 100 split blank nuts ones are used. The training set consisted of 60 samples of each type of opened nuts, closed and empty opened shell nuts a total of 180 samples and the evaluation set consisted of 40 samples of each type of opened shell, closed shell and empty opened shell nuts a total of 120 samples. The principle of this study is implemented in two steps: 1) sample imaging and image processing to extract features 2) fuzzy network design based on the characteristics of data and training. To select useful features from the hypothesis, C4.5 decision tree is used. C4.5 algorithm makes a greedy top to bottom search on the hypothesis, and is made by the question what feature must be at the root of the tree. By the help of statistical methods, extracted features from the images were prioritized and the most appropriate features for classification of training set were selected. The algorithm chooses the best features as their number is minimum. Finally, a total amount of the second moment (m2) and matrix vectors of image were selected as features. Features and rules produced from decision tree fed into an Adaptable Neuro-fuzzy Inference System (ANFIS). ANFIS provides a neural network based on Fuzzy Inference System (FIS) can produce appropriate output corresponding input patterns. Results and Discussion: The proposed model was trained and tested inside ANFIS Editor of the MATLAB software. 300 images, including closed shell, pithy and empty pistachio were selected for training and testing. This network uses 200 data related to these two features and were trained over 200 courses, the accuracy of the result was 95.8%. 100 image have been used to test network over 40 courses with accuracy 97%. The time for the training and testing steps are 0.73 and 0.31 seconds, respectively, and the time to choose the features and rules was 2.1 seconds. Conclusions: In this study, a model was introduced to sort non- split nuts, blank nuts and filled nuts pistachios. Evaluation of training and testing, shows that the model has the ability to classify different types of nuts with high precision. In the previously proposed methods, merely non-split and split pistachio nuts were sorted and being filled or blank nuts is unrecognizable. Nevertheless, accuracy of the mentioned method is 95.56 percent. As well as, other method sorted non-split and split pistachio nuts with an accuracy of 98% and 85% respectively for training and testing steps. The model proposed in this study is better than the other methods and it is encouraging for the improvement and development of the model.
format article
author A. R Abdollahnejad Barough
M Adelinia
M Mohamadi
author_facet A. R Abdollahnejad Barough
M Adelinia
M Mohamadi
author_sort A. R Abdollahnejad Barough
title Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system
title_short Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system
title_full Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system
title_fullStr Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system
title_full_unstemmed Sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system
title_sort sorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system
publisher Ferdowsi University of Mashhad
publishDate 2016
url https://doaj.org/article/2f651300139a4716a976dea091e8630e
work_keys_str_mv AT arabdollahnejadbarough sortingofpistachionutsusingimageprocessingtechniquesandanadaptiveneuralfuzzyinferencesystem
AT madelinia sortingofpistachionutsusingimageprocessingtechniquesandanadaptiveneuralfuzzyinferencesystem
AT mmohamadi sortingofpistachionutsusingimageprocessingtechniquesandanadaptiveneuralfuzzyinferencesystem
_version_ 1718429888131629056
spelling oai:doaj.org-article:2f651300139a4716a976dea091e8630e2021-11-14T06:33:19ZSorting of pistachio nuts using image processing techniques and an adaptive neural-fuzzy inference system2228-68292423-394310.22067/jam.v6i1.33097https://doaj.org/article/2f651300139a4716a976dea091e8630e2016-03-01T00:00:00Zhttps://jame.um.ac.ir/article_29846_f37724a26b3d9bd213332eb44e0aad50.pdfhttps://doaj.org/toc/2228-6829https://doaj.org/toc/2423-3943Introduction: Pistachio nut is one of the most important agricultural products of Iran and it is priced due to the quality and type. One of the significant factors of pistachio cost is its type in terms of shell. Filled split pistachio nut has the most quality and is utilized as nuts, while the closed shell type has lower cost, at the same time is economically efficient in food industry such as confectionery. Now, pistachio sorting is performed usually by human and sometimes using electromechanical apparatuses. Classification of pistachio by human is time consuming and is done with an unacceptable accuracy, on the other hand, electromechanical and electro optical apparatuses damages pistachio because the mechanism used in them while separating. So, the need to develop automated systems that could be implemented by intelligent ways is evident to increase the speed and accuracy of classification. Materials and Methods: In this study, 300 samples of pistachios contains 100 Filled split, 100 Filled non-split and 100 split blank nuts ones are used. The training set consisted of 60 samples of each type of opened nuts, closed and empty opened shell nuts a total of 180 samples and the evaluation set consisted of 40 samples of each type of opened shell, closed shell and empty opened shell nuts a total of 120 samples. The principle of this study is implemented in two steps: 1) sample imaging and image processing to extract features 2) fuzzy network design based on the characteristics of data and training. To select useful features from the hypothesis, C4.5 decision tree is used. C4.5 algorithm makes a greedy top to bottom search on the hypothesis, and is made by the question what feature must be at the root of the tree. By the help of statistical methods, extracted features from the images were prioritized and the most appropriate features for classification of training set were selected. The algorithm chooses the best features as their number is minimum. Finally, a total amount of the second moment (m2) and matrix vectors of image were selected as features. Features and rules produced from decision tree fed into an Adaptable Neuro-fuzzy Inference System (ANFIS). ANFIS provides a neural network based on Fuzzy Inference System (FIS) can produce appropriate output corresponding input patterns. Results and Discussion: The proposed model was trained and tested inside ANFIS Editor of the MATLAB software. 300 images, including closed shell, pithy and empty pistachio were selected for training and testing. This network uses 200 data related to these two features and were trained over 200 courses, the accuracy of the result was 95.8%. 100 image have been used to test network over 40 courses with accuracy 97%. The time for the training and testing steps are 0.73 and 0.31 seconds, respectively, and the time to choose the features and rules was 2.1 seconds. Conclusions: In this study, a model was introduced to sort non- split nuts, blank nuts and filled nuts pistachios. Evaluation of training and testing, shows that the model has the ability to classify different types of nuts with high precision. In the previously proposed methods, merely non-split and split pistachio nuts were sorted and being filled or blank nuts is unrecognizable. Nevertheless, accuracy of the mentioned method is 95.56 percent. As well as, other method sorted non-split and split pistachio nuts with an accuracy of 98% and 85% respectively for training and testing steps. The model proposed in this study is better than the other methods and it is encouraging for the improvement and development of the model.A. R Abdollahnejad BaroughM AdeliniaM MohamadiFerdowsi University of Mashhadarticlealgorithm c4.5image processingneuro-fuzzy systempistachios classificationAgriculture (General)S1-972Engineering (General). Civil engineering (General)TA1-2040ENFAJournal of Agricultural Machinery, Vol 6, Iss 1, Pp 60-68 (2016)