New findings about iron oxide nanoparticles and their different effects on murine primary brain cells

Jenni Neubert,1 Susanne Wagner,2 Jürgen Kiwit,3 Anja U Bräuer,1,* Jana Glumm1,3,* 1Institute of Cell Biology and Neurobiology, Center for Anatomy, 2Institute for Radiology, Charité-Universitaetsmedizin Berlin, 3Clinic for Neurosurgery, HELIOS Klinikum Berlin-Buch, Berl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Neubert J, Wagner S, Kiwit J, Bräuer AU, Glumm J
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://doaj.org/article/2f702c3f5fc14b07b413424901aa6a78
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2f702c3f5fc14b07b413424901aa6a78
record_format dspace
spelling oai:doaj.org-article:2f702c3f5fc14b07b413424901aa6a782021-12-02T00:12:59ZNew findings about iron oxide nanoparticles and their different effects on murine primary brain cells1178-2013https://doaj.org/article/2f702c3f5fc14b07b413424901aa6a782015-03-01T00:00:00Zhttp://www.dovepress.com/new-findings-about-iron-oxide-nanoparticles-andnbsptheir-different-eff-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Jenni Neubert,1 Susanne Wagner,2 Jürgen Kiwit,3 Anja U Bräuer,1,* Jana Glumm1,3,* 1Institute of Cell Biology and Neurobiology, Center for Anatomy, 2Institute for Radiology, Charité-Universitaetsmedizin Berlin, 3Clinic for Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin, Germany *These authors contributed equally to this work Abstract: The physicochemical properties of superparamagnetic iron oxide nanoparticles (SPIOs) enable their application in the diagnostics and therapy of central nervous system diseases. However, since crucial information regarding side effects of particle–cell interactions within the central nervous system is still lacking, we investigated the influence of novel very small iron oxide particles or the clinically approved ferucarbotran or ferumoxytol on the vitality and morphology of brain cells. We exposed primary cell cultures of microglia and hippocampal neurons, as well as neuron–glia cocultures to varying concentrations of SPIOs for 6 and/or 24 hours, respectively. Here, we show that SPIO accumulation by microglia and subsequent morphological alterations strongly depend on the respective nanoparticle type. Microglial viability was severely compromised by high SPIO concentrations, except in the case of ferumoxytol. While ferumoxytol did not cause immediate microglial death, it induced severe morphological alterations and increased degeneration of primary neurons. Additionally, primary neurons clearly degenerated after very small iron oxide particle and ferucarbotran exposure. In neuron–glia cocultures, SPIOs rather stimulated the outgrowth of neuronal processes in a concentration- and particle-dependent manner. We conclude that the influence of SPIOs on brain cells not only depends on the particle type but also on the physiological system they are applied to. Keywords: microglia, hippocampal neurons, degeneration, morphology, nanoparticles Neubert JWagner SKiwit JBräuer AUGlumm JDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 2033-2049 (2015)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Neubert J
Wagner S
Kiwit J
Bräuer AU
Glumm J
New findings about iron oxide nanoparticles and their different effects on murine primary brain cells
description Jenni Neubert,1 Susanne Wagner,2 Jürgen Kiwit,3 Anja U Bräuer,1,* Jana Glumm1,3,* 1Institute of Cell Biology and Neurobiology, Center for Anatomy, 2Institute for Radiology, Charité-Universitaetsmedizin Berlin, 3Clinic for Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin, Germany *These authors contributed equally to this work Abstract: The physicochemical properties of superparamagnetic iron oxide nanoparticles (SPIOs) enable their application in the diagnostics and therapy of central nervous system diseases. However, since crucial information regarding side effects of particle–cell interactions within the central nervous system is still lacking, we investigated the influence of novel very small iron oxide particles or the clinically approved ferucarbotran or ferumoxytol on the vitality and morphology of brain cells. We exposed primary cell cultures of microglia and hippocampal neurons, as well as neuron–glia cocultures to varying concentrations of SPIOs for 6 and/or 24 hours, respectively. Here, we show that SPIO accumulation by microglia and subsequent morphological alterations strongly depend on the respective nanoparticle type. Microglial viability was severely compromised by high SPIO concentrations, except in the case of ferumoxytol. While ferumoxytol did not cause immediate microglial death, it induced severe morphological alterations and increased degeneration of primary neurons. Additionally, primary neurons clearly degenerated after very small iron oxide particle and ferucarbotran exposure. In neuron–glia cocultures, SPIOs rather stimulated the outgrowth of neuronal processes in a concentration- and particle-dependent manner. We conclude that the influence of SPIOs on brain cells not only depends on the particle type but also on the physiological system they are applied to. Keywords: microglia, hippocampal neurons, degeneration, morphology, nanoparticles 
format article
author Neubert J
Wagner S
Kiwit J
Bräuer AU
Glumm J
author_facet Neubert J
Wagner S
Kiwit J
Bräuer AU
Glumm J
author_sort Neubert J
title New findings about iron oxide nanoparticles and their different effects on murine primary brain cells
title_short New findings about iron oxide nanoparticles and their different effects on murine primary brain cells
title_full New findings about iron oxide nanoparticles and their different effects on murine primary brain cells
title_fullStr New findings about iron oxide nanoparticles and their different effects on murine primary brain cells
title_full_unstemmed New findings about iron oxide nanoparticles and their different effects on murine primary brain cells
title_sort new findings about iron oxide nanoparticles and their different effects on murine primary brain cells
publisher Dove Medical Press
publishDate 2015
url https://doaj.org/article/2f702c3f5fc14b07b413424901aa6a78
work_keys_str_mv AT neubertj newfindingsaboutironoxidenanoparticlesandnbsptheirdifferenteffectsonmurineprimarybraincells
AT wagners newfindingsaboutironoxidenanoparticlesandnbsptheirdifferenteffectsonmurineprimarybraincells
AT kiwitj newfindingsaboutironoxidenanoparticlesandnbsptheirdifferenteffectsonmurineprimarybraincells
AT brauerau newfindingsaboutironoxidenanoparticlesandnbsptheirdifferenteffectsonmurineprimarybraincells
AT glummj newfindingsaboutironoxidenanoparticlesandnbsptheirdifferenteffectsonmurineprimarybraincells
_version_ 1718403854027980800