Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens.
Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machin...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2f7da3511c5a43a1a60fcf00f39f5dc2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2f7da3511c5a43a1a60fcf00f39f5dc2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2f7da3511c5a43a1a60fcf00f39f5dc22021-11-18T05:52:56ZConstraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens.1553-734X1553-735810.1371/journal.pcbi.1003575https://doaj.org/article/2f7da3511c5a43a1a60fcf00f39f5dc22014-04-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24762737/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.Adam M FeistHarish NagarajanAmelia-Elena RotaruPier-Luc TremblayTian ZhangKelly P NevinDerek R LovleyKarsten ZenglerPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 10, Iss 4, p e1003575 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Adam M Feist Harish Nagarajan Amelia-Elena Rotaru Pier-Luc Tremblay Tian Zhang Kelly P Nevin Derek R Lovley Karsten Zengler Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. |
description |
Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species. |
format |
article |
author |
Adam M Feist Harish Nagarajan Amelia-Elena Rotaru Pier-Luc Tremblay Tian Zhang Kelly P Nevin Derek R Lovley Karsten Zengler |
author_facet |
Adam M Feist Harish Nagarajan Amelia-Elena Rotaru Pier-Luc Tremblay Tian Zhang Kelly P Nevin Derek R Lovley Karsten Zengler |
author_sort |
Adam M Feist |
title |
Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. |
title_short |
Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. |
title_full |
Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. |
title_fullStr |
Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. |
title_full_unstemmed |
Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. |
title_sort |
constraint-based modeling of carbon fixation and the energetics of electron transfer in geobacter metallireducens. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/2f7da3511c5a43a1a60fcf00f39f5dc2 |
work_keys_str_mv |
AT adammfeist constraintbasedmodelingofcarbonfixationandtheenergeticsofelectrontransferingeobactermetallireducens AT harishnagarajan constraintbasedmodelingofcarbonfixationandtheenergeticsofelectrontransferingeobactermetallireducens AT ameliaelenarotaru constraintbasedmodelingofcarbonfixationandtheenergeticsofelectrontransferingeobactermetallireducens AT pierluctremblay constraintbasedmodelingofcarbonfixationandtheenergeticsofelectrontransferingeobactermetallireducens AT tianzhang constraintbasedmodelingofcarbonfixationandtheenergeticsofelectrontransferingeobactermetallireducens AT kellypnevin constraintbasedmodelingofcarbonfixationandtheenergeticsofelectrontransferingeobactermetallireducens AT derekrlovley constraintbasedmodelingofcarbonfixationandtheenergeticsofelectrontransferingeobactermetallireducens AT karstenzengler constraintbasedmodelingofcarbonfixationandtheenergeticsofelectrontransferingeobactermetallireducens |
_version_ |
1718424717093765120 |