Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer

Abstract Genetic co-expression network (GCN) analysis augments the understanding of breast cancer (BC). We aimed to propose GCN-based modeling for BC relapse-free survival (RFS) prediction and to discover novel biomarkers. We used GCN and Cox proportional hazard regression to create various predicti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chi-Ming Chu, Huan-Ming Hsu, Chi-Wen Chang, Yuan-Kuei Li, Yu-Jia Chang, Jyh-Cherng Yu, Chien-Ting Chen, Chen-En Jian, Meng-Chiung Lin, Kang-Hua Chen, Ming-Hao Kuo, Chia-Shiang Cheng, Ya-Ting Chang, Yi-Syuan Wu, Hao-Yi Wu, Ya-Ting Yang, Je-Ming Hu, Yu-Tien Chang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2f9335fe875d41c9aca44e5deee283de
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2f9335fe875d41c9aca44e5deee283de
record_format dspace
spelling oai:doaj.org-article:2f9335fe875d41c9aca44e5deee283de2021-12-02T13:26:37ZGenetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer10.1038/s41598-021-84995-z2045-2322https://doaj.org/article/2f9335fe875d41c9aca44e5deee283de2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84995-zhttps://doaj.org/toc/2045-2322Abstract Genetic co-expression network (GCN) analysis augments the understanding of breast cancer (BC). We aimed to propose GCN-based modeling for BC relapse-free survival (RFS) prediction and to discover novel biomarkers. We used GCN and Cox proportional hazard regression to create various prediction models using mRNA microarray of 920 tumors and conduct external validation using independent data of 1056 tumors. GCNs of 34 identified candidate genes were plotted in various sizes. Compared to the reference model, the genetic predictors selected from bigger GCNs composed better prediction models. The prediction accuracy and AUC of 3 ~ 15-year RFS are 71.0–81.4% and 74.6–78% respectively (rfm, ACC 63.2–65.5%, AUC 61.9–74.9%). The hazard ratios of risk scores of developing relapse ranged from 1.89 ~ 3.32 (p < 10–8) over all models under the control of the node status. External validation showed the consistent finding. We found top 12 co-expressed genes are relative new or novel biomarkers that have not been explored in BC prognosis or other cancers until this decade. GCN-based modeling creates better prediction models and facilitates novel genes exploration on BC prognosis.Chi-Ming ChuHuan-Ming HsuChi-Wen ChangYuan-Kuei LiYu-Jia ChangJyh-Cherng YuChien-Ting ChenChen-En JianMeng-Chiung LinKang-Hua ChenMing-Hao KuoChia-Shiang ChengYa-Ting ChangYi-Syuan WuHao-Yi WuYa-Ting YangJe-Ming HuYu-Tien ChangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Chi-Ming Chu
Huan-Ming Hsu
Chi-Wen Chang
Yuan-Kuei Li
Yu-Jia Chang
Jyh-Cherng Yu
Chien-Ting Chen
Chen-En Jian
Meng-Chiung Lin
Kang-Hua Chen
Ming-Hao Kuo
Chia-Shiang Cheng
Ya-Ting Chang
Yi-Syuan Wu
Hao-Yi Wu
Ya-Ting Yang
Je-Ming Hu
Yu-Tien Chang
Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer
description Abstract Genetic co-expression network (GCN) analysis augments the understanding of breast cancer (BC). We aimed to propose GCN-based modeling for BC relapse-free survival (RFS) prediction and to discover novel biomarkers. We used GCN and Cox proportional hazard regression to create various prediction models using mRNA microarray of 920 tumors and conduct external validation using independent data of 1056 tumors. GCNs of 34 identified candidate genes were plotted in various sizes. Compared to the reference model, the genetic predictors selected from bigger GCNs composed better prediction models. The prediction accuracy and AUC of 3 ~ 15-year RFS are 71.0–81.4% and 74.6–78% respectively (rfm, ACC 63.2–65.5%, AUC 61.9–74.9%). The hazard ratios of risk scores of developing relapse ranged from 1.89 ~ 3.32 (p < 10–8) over all models under the control of the node status. External validation showed the consistent finding. We found top 12 co-expressed genes are relative new or novel biomarkers that have not been explored in BC prognosis or other cancers until this decade. GCN-based modeling creates better prediction models and facilitates novel genes exploration on BC prognosis.
format article
author Chi-Ming Chu
Huan-Ming Hsu
Chi-Wen Chang
Yuan-Kuei Li
Yu-Jia Chang
Jyh-Cherng Yu
Chien-Ting Chen
Chen-En Jian
Meng-Chiung Lin
Kang-Hua Chen
Ming-Hao Kuo
Chia-Shiang Cheng
Ya-Ting Chang
Yi-Syuan Wu
Hao-Yi Wu
Ya-Ting Yang
Je-Ming Hu
Yu-Tien Chang
author_facet Chi-Ming Chu
Huan-Ming Hsu
Chi-Wen Chang
Yuan-Kuei Li
Yu-Jia Chang
Jyh-Cherng Yu
Chien-Ting Chen
Chen-En Jian
Meng-Chiung Lin
Kang-Hua Chen
Ming-Hao Kuo
Chia-Shiang Cheng
Ya-Ting Chang
Yi-Syuan Wu
Hao-Yi Wu
Ya-Ting Yang
Je-Ming Hu
Yu-Tien Chang
author_sort Chi-Ming Chu
title Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer
title_short Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer
title_full Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer
title_fullStr Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer
title_full_unstemmed Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer
title_sort genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2f9335fe875d41c9aca44e5deee283de
work_keys_str_mv AT chimingchu geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT huanminghsu geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT chiwenchang geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT yuankueili geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT yujiachang geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT jyhcherngyu geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT chientingchen geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT chenenjian geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT mengchiunglin geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT kanghuachen geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT minghaokuo geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT chiashiangcheng geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT yatingchang geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT yisyuanwu geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT haoyiwu geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT yatingyang geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT jeminghu geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
AT yutienchang geneticcoexpressionnetworkscontributetocreatingpredictivemodelandexploringnovelbiomarkersfortheprognosisofbreastcancer
_version_ 1718393020673425408