Ontology-driven weak supervision for clinical entity classification in electronic health records

In the electronic health record, using clinical notes to identify entities such as disorders and their temporality can inform many important analyses. Here, the authors present a framework for weakly supervised entity classification using medical ontologies and expert-generated rules.

Guardado en:
Detalles Bibliográficos
Autores principales: Jason A. Fries, Ethan Steinberg, Saelig Khattar, Scott L. Fleming, Jose Posada, Alison Callahan, Nigam H. Shah
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/2f95d01741cc4c879cc47cb28144da3f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In the electronic health record, using clinical notes to identify entities such as disorders and their temporality can inform many important analyses. Here, the authors present a framework for weakly supervised entity classification using medical ontologies and expert-generated rules.