Ontology-driven weak supervision for clinical entity classification in electronic health records

In the electronic health record, using clinical notes to identify entities such as disorders and their temporality can inform many important analyses. Here, the authors present a framework for weakly supervised entity classification using medical ontologies and expert-generated rules.

Guardado en:
Detalles Bibliográficos
Autores principales: Jason A. Fries, Ethan Steinberg, Saelig Khattar, Scott L. Fleming, Jose Posada, Alison Callahan, Nigam H. Shah
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/2f95d01741cc4c879cc47cb28144da3f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2f95d01741cc4c879cc47cb28144da3f
record_format dspace
spelling oai:doaj.org-article:2f95d01741cc4c879cc47cb28144da3f2021-12-02T18:17:51ZOntology-driven weak supervision for clinical entity classification in electronic health records10.1038/s41467-021-22328-42041-1723https://doaj.org/article/2f95d01741cc4c879cc47cb28144da3f2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22328-4https://doaj.org/toc/2041-1723In the electronic health record, using clinical notes to identify entities such as disorders and their temporality can inform many important analyses. Here, the authors present a framework for weakly supervised entity classification using medical ontologies and expert-generated rules.Jason A. FriesEthan SteinbergSaelig KhattarScott L. FlemingJose PosadaAlison CallahanNigam H. ShahNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jason A. Fries
Ethan Steinberg
Saelig Khattar
Scott L. Fleming
Jose Posada
Alison Callahan
Nigam H. Shah
Ontology-driven weak supervision for clinical entity classification in electronic health records
description In the electronic health record, using clinical notes to identify entities such as disorders and their temporality can inform many important analyses. Here, the authors present a framework for weakly supervised entity classification using medical ontologies and expert-generated rules.
format article
author Jason A. Fries
Ethan Steinberg
Saelig Khattar
Scott L. Fleming
Jose Posada
Alison Callahan
Nigam H. Shah
author_facet Jason A. Fries
Ethan Steinberg
Saelig Khattar
Scott L. Fleming
Jose Posada
Alison Callahan
Nigam H. Shah
author_sort Jason A. Fries
title Ontology-driven weak supervision for clinical entity classification in electronic health records
title_short Ontology-driven weak supervision for clinical entity classification in electronic health records
title_full Ontology-driven weak supervision for clinical entity classification in electronic health records
title_fullStr Ontology-driven weak supervision for clinical entity classification in electronic health records
title_full_unstemmed Ontology-driven weak supervision for clinical entity classification in electronic health records
title_sort ontology-driven weak supervision for clinical entity classification in electronic health records
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2f95d01741cc4c879cc47cb28144da3f
work_keys_str_mv AT jasonafries ontologydrivenweaksupervisionforclinicalentityclassificationinelectronichealthrecords
AT ethansteinberg ontologydrivenweaksupervisionforclinicalentityclassificationinelectronichealthrecords
AT saeligkhattar ontologydrivenweaksupervisionforclinicalentityclassificationinelectronichealthrecords
AT scottlfleming ontologydrivenweaksupervisionforclinicalentityclassificationinelectronichealthrecords
AT joseposada ontologydrivenweaksupervisionforclinicalentityclassificationinelectronichealthrecords
AT alisoncallahan ontologydrivenweaksupervisionforclinicalentityclassificationinelectronichealthrecords
AT nigamhshah ontologydrivenweaksupervisionforclinicalentityclassificationinelectronichealthrecords
_version_ 1718378265268191232