Ontology-driven weak supervision for clinical entity classification in electronic health records
In the electronic health record, using clinical notes to identify entities such as disorders and their temporality can inform many important analyses. Here, the authors present a framework for weakly supervised entity classification using medical ontologies and expert-generated rules.
Guardado en:
Autores principales: | Jason A. Fries, Ethan Steinberg, Saelig Khattar, Scott L. Fleming, Jose Posada, Alison Callahan, Nigam H. Shah |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2f95d01741cc4c879cc47cb28144da3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
por: Jason A. Fries, et al.
Publicado: (2019) -
Weakly-supervised learning for lung carcinoma classification using deep learning
por: Fahdi Kanavati, et al.
Publicado: (2020) -
Estimating the efficacy of symptom-based screening for COVID-19
por: Alison Callahan, et al.
Publicado: (2020) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Fahdi Kanavati, et al.
Publicado: (2021) -
Chapter 9: Analyses using disease ontologies.
por: Nigam H Shah, et al.
Publicado: (2012)