Asymptotic normality of the relative error regression function estimator for censored and time series data

Consider a survival time study, where a sequence of possibly censored failure times is observed with d-dimensional covariate The main goal of this article is to establish the asymptotic normality of the kernel estimator of the relative error regression function when the data exhibit some kind of dep...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bouhadjera Feriel, Saïd Elias Ould
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/2fa062dce6054e60ba0f6dcbe3bdc68f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2fa062dce6054e60ba0f6dcbe3bdc68f
record_format dspace
spelling oai:doaj.org-article:2fa062dce6054e60ba0f6dcbe3bdc68f2021-12-05T14:10:46ZAsymptotic normality of the relative error regression function estimator for censored and time series data2300-229810.1515/demo-2021-0107https://doaj.org/article/2fa062dce6054e60ba0f6dcbe3bdc68f2021-08-01T00:00:00Zhttps://doi.org/10.1515/demo-2021-0107https://doaj.org/toc/2300-2298Consider a survival time study, where a sequence of possibly censored failure times is observed with d-dimensional covariate The main goal of this article is to establish the asymptotic normality of the kernel estimator of the relative error regression function when the data exhibit some kind of dependency. The asymptotic variance is explicitly given. Some simulations are drawn to lend further support to our theoretical result and illustrate the good accuracy of the studied method. Furthermore, a real data example is treated to show the good quality of the prediction and that the true data are well inside in the confidence intervals.Bouhadjera FerielSaïd Elias OuldDe Gruyterarticleasymptotic normalitycensored datakernel smoothingprobability consistencyregression functionrelative errorstrong mixing62g0562g0862g3062n0162n0262p10Science (General)Q1-390MathematicsQA1-939ENDependence Modeling, Vol 9, Iss 1, Pp 156-178 (2021)
institution DOAJ
collection DOAJ
language EN
topic asymptotic normality
censored data
kernel smoothing
probability consistency
regression function
relative error
strong mixing
62g05
62g08
62g30
62n01
62n02
62p10
Science (General)
Q1-390
Mathematics
QA1-939
spellingShingle asymptotic normality
censored data
kernel smoothing
probability consistency
regression function
relative error
strong mixing
62g05
62g08
62g30
62n01
62n02
62p10
Science (General)
Q1-390
Mathematics
QA1-939
Bouhadjera Feriel
Saïd Elias Ould
Asymptotic normality of the relative error regression function estimator for censored and time series data
description Consider a survival time study, where a sequence of possibly censored failure times is observed with d-dimensional covariate The main goal of this article is to establish the asymptotic normality of the kernel estimator of the relative error regression function when the data exhibit some kind of dependency. The asymptotic variance is explicitly given. Some simulations are drawn to lend further support to our theoretical result and illustrate the good accuracy of the studied method. Furthermore, a real data example is treated to show the good quality of the prediction and that the true data are well inside in the confidence intervals.
format article
author Bouhadjera Feriel
Saïd Elias Ould
author_facet Bouhadjera Feriel
Saïd Elias Ould
author_sort Bouhadjera Feriel
title Asymptotic normality of the relative error regression function estimator for censored and time series data
title_short Asymptotic normality of the relative error regression function estimator for censored and time series data
title_full Asymptotic normality of the relative error regression function estimator for censored and time series data
title_fullStr Asymptotic normality of the relative error regression function estimator for censored and time series data
title_full_unstemmed Asymptotic normality of the relative error regression function estimator for censored and time series data
title_sort asymptotic normality of the relative error regression function estimator for censored and time series data
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/2fa062dce6054e60ba0f6dcbe3bdc68f
work_keys_str_mv AT bouhadjeraferiel asymptoticnormalityoftherelativeerrorregressionfunctionestimatorforcensoredandtimeseriesdata
AT saideliasould asymptoticnormalityoftherelativeerrorregressionfunctionestimatorforcensoredandtimeseriesdata
_version_ 1718371711719571456