LCS-EnsemNet: A Semisupervised Deep Neural Network for SAR Image Change Detection With Dual Feature Extraction and Label-Consistent Self-Ensemble
Change detection (CD) in synthetic aperture radar (SAR) images faces two challenging problems limiting the detection performance: inherent speckle noise in SAR data causes the overlapping nature of changed and unchanged classes and, thus, affects the image understanding for inferring category of eac...
Enregistré dans:
| Auteurs principaux: | Jian Wang, Yinghua Wang, Bo Chen, Hongwei Liu |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
IEEE
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/2fa5a4f1708f43a4a1ddec9e489c119e |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
par: Pablo Gomez, et autres
Publié: (2021) -
A Two-Scale Method of Sea Ice Classification Using TerraSAR-X ScanSAR Data During Early Freeze-Up
par: Huiying Liu, et autres
Publié: (2021) -
Efficient Generation of Artificial Training DB for Ship Detection Using Satellite SAR Images
par: Seung-Jae Lee, et autres
Publié: (2021) -
Towards Operational Flood Monitoring in Flanders Using Sentinel-1
par: Lisa Landuyt, et autres
Publié: (2021) -
Fast Rotation Matching Method for SAR and Optical Images
par: Xinchen Li, et autres
Publié: (2021)