LCS-EnsemNet: A Semisupervised Deep Neural Network for SAR Image Change Detection With Dual Feature Extraction and Label-Consistent Self-Ensemble
Change detection (CD) in synthetic aperture radar (SAR) images faces two challenging problems limiting the detection performance: inherent speckle noise in SAR data causes the overlapping nature of changed and unchanged classes and, thus, affects the image understanding for inferring category of eac...
Guardado en:
Autores principales: | Jian Wang, Yinghua Wang, Bo Chen, Hongwei Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fa5a4f1708f43a4a1ddec9e489c119e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MSMatch: Semisupervised Multispectral Scene Classification With Few Labels
por: Pablo Gomez, et al.
Publicado: (2021) -
A Two-Scale Method of Sea Ice Classification Using TerraSAR-X ScanSAR Data During Early Freeze-Up
por: Huiying Liu, et al.
Publicado: (2021) -
Efficient Generation of Artificial Training DB for Ship Detection Using Satellite SAR Images
por: Seung-Jae Lee, et al.
Publicado: (2021) -
Towards Operational Flood Monitoring in Flanders Using Sentinel-1
por: Lisa Landuyt, et al.
Publicado: (2021) -
Fast Rotation Matching Method for SAR and Optical Images
por: Xinchen Li, et al.
Publicado: (2021)