A study on the (2+1)–dimensional first extended Calogero-Bogoyavlenskii- Schiff equation
This article studies a (2+1)–dimensional first extended Calogero-Bogoyavlenskii-Schiff equation, which was recently introduced in the literature. We derive Lie symmetries of this equation and then use them to perform symmetry reductions. Using translation symmetries, a fourth-order ordinary differen...
Guardado en:
Autores principales: | Chaudry Masood Khalique, Kentse Maefo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fa709a310f641f7a0f303b0021d48a1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Symmetry Solutions and Conservation Laws for the 3D Generalized Potential Yu-Toda-Sasa-Fukuyama Equation of Mathematical Physics
por: Chaudry Masood Khalique, et al.
Publicado: (2021) -
Approximate Noether Symmetries of Perturbed Lagrangians and Approximate Conservation Laws
por: Matteo Gorgone, et al.
Publicado: (2021) -
On the solutions and conservation laws of the 2D breaking soliton equation of fluid mechanics
por: Karabo Plaatjie, et al.
Publicado: (2021) -
Lie symmetries of Benjamin-Ono equation
por: Weidong Zhao, et al.
Publicado: (2021) -
Approximate Mei Symmetries and Invariants of the Hamiltonian
por: Umara Kausar, et al.
Publicado: (2021)