Cascaded feature enhancement network model for real-time video monitoring of power system
The application of real-time monitoring has been widely used to detect the safety and stability of the electric power system. Traditional monitoring relies heavily on human judgment and is impossible to detect status in real-time. Recently, with the development of deep learning, the object detection...
Guardado en:
Autores principales: | Xitian Long, Zhe Zheng, Rui Liu, Wenpeng Cui, Yingying Chi, Haifeng Zhang, Yidong Yuan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fa9158403994dc4add590e90c01f5f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single Fault Diagnosis Method of Sensors in Cascade System Based on Data-Driven
por: Wenbo Na, et al.
Publicado: (2021) -
Multi-Level Refinement Feature Pyramid Network for Scale Imbalance Object Detection
por: Lubna Aziz, et al.
Publicado: (2021) -
Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review
por: Yuanyuan Yang, et al.
Publicado: (2021) -
Towards the Integration of Reliability and Security Mechanisms to Enhance the Fault Resilience of Neural Networks
por: Nikolaos Ioannis Deligiannis, et al.
Publicado: (2021) -
An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems
por: Khaled Dhibi, et al.
Publicado: (2021)