Identifying unreliable predictions in clinical risk models
Abstract The ability to identify patients who are likely to have an adverse outcome is an essential component of good clinical care. Therefore, predictive risk stratification models play an important role in clinical decision making. Determining whether a given predictive model is suitable for clini...
Guardado en:
Autores principales: | Paul D. Myers, Kenney Ng, Kristen Severson, Uri Kartoun, Wangzhi Dai, Wei Huang, Frederick A. Anderson, Collin M. Stultz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fc1775645bb49caa1fa9a615f60562f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identifying undercompensated groups defined by multiple attributes in risk adjustment
por: Anna Zink, et al.
Publicado: (2021) -
Time-ordered comorbidity correlations identify patients at risk of mis- and overdiagnosis
por: Isabella Friis Jørgensen, et al.
Publicado: (2021) -
Trait-like nocturnal sleep behavior identified by combining wearable, phone-use, and self-report data
por: Stijn A. A. Massar, et al.
Publicado: (2021) -
Clinical risk prediction models: the canary in the coalmine for artificial intelligence in healthcare?
por: John Ainsworth, et al.
Publicado: (2021) -
Predicting risk of late age-related macular degeneration using deep learning
por: Yifan Peng, et al.
Publicado: (2020)