Inviscid, zero Froude number limit of the viscous shallow water system
In this paper, we study the inviscid and zero Froude number limits of the viscous shallow water system. We prove that the limit system is represented by the incompressible Euler equations on the whole space. Furthermore, the rate of convergence is also obtained.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fd28990933f4c10a9dc14bd8b2f00f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2fd28990933f4c10a9dc14bd8b2f00f1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2fd28990933f4c10a9dc14bd8b2f00f12021-12-05T14:10:53ZInviscid, zero Froude number limit of the viscous shallow water system2391-545510.1515/math-2021-0043https://doaj.org/article/2fd28990933f4c10a9dc14bd8b2f00f12021-07-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0043https://doaj.org/toc/2391-5455In this paper, we study the inviscid and zero Froude number limits of the viscous shallow water system. We prove that the limit system is represented by the incompressible Euler equations on the whole space. Furthermore, the rate of convergence is also obtained.Yang JianweiLiu MengyuHao HuiyunDe Gruyterarticleviscous shallow water equationsincompressible euler equationslow froude number limitinviscid limit35b2535q3576b15MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 531-539 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
viscous shallow water equations incompressible euler equations low froude number limit inviscid limit 35b25 35q35 76b15 Mathematics QA1-939 |
spellingShingle |
viscous shallow water equations incompressible euler equations low froude number limit inviscid limit 35b25 35q35 76b15 Mathematics QA1-939 Yang Jianwei Liu Mengyu Hao Huiyun Inviscid, zero Froude number limit of the viscous shallow water system |
description |
In this paper, we study the inviscid and zero Froude number limits of the viscous shallow water system. We prove that the limit system is represented by the incompressible Euler equations on the whole space. Furthermore, the rate of convergence is also obtained. |
format |
article |
author |
Yang Jianwei Liu Mengyu Hao Huiyun |
author_facet |
Yang Jianwei Liu Mengyu Hao Huiyun |
author_sort |
Yang Jianwei |
title |
Inviscid, zero Froude number limit of the viscous shallow water system |
title_short |
Inviscid, zero Froude number limit of the viscous shallow water system |
title_full |
Inviscid, zero Froude number limit of the viscous shallow water system |
title_fullStr |
Inviscid, zero Froude number limit of the viscous shallow water system |
title_full_unstemmed |
Inviscid, zero Froude number limit of the viscous shallow water system |
title_sort |
inviscid, zero froude number limit of the viscous shallow water system |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/2fd28990933f4c10a9dc14bd8b2f00f1 |
work_keys_str_mv |
AT yangjianwei inviscidzerofroudenumberlimitoftheviscousshallowwatersystem AT liumengyu inviscidzerofroudenumberlimitoftheviscousshallowwatersystem AT haohuiyun inviscidzerofroudenumberlimitoftheviscousshallowwatersystem |
_version_ |
1718371593835511808 |