Inviscid, zero Froude number limit of the viscous shallow water system

In this paper, we study the inviscid and zero Froude number limits of the viscous shallow water system. We prove that the limit system is represented by the incompressible Euler equations on the whole space. Furthermore, the rate of convergence is also obtained.

Guardado en:
Detalles Bibliográficos
Autores principales: Yang Jianwei, Liu Mengyu, Hao Huiyun
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/2fd28990933f4c10a9dc14bd8b2f00f1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2fd28990933f4c10a9dc14bd8b2f00f1
record_format dspace
spelling oai:doaj.org-article:2fd28990933f4c10a9dc14bd8b2f00f12021-12-05T14:10:53ZInviscid, zero Froude number limit of the viscous shallow water system2391-545510.1515/math-2021-0043https://doaj.org/article/2fd28990933f4c10a9dc14bd8b2f00f12021-07-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0043https://doaj.org/toc/2391-5455In this paper, we study the inviscid and zero Froude number limits of the viscous shallow water system. We prove that the limit system is represented by the incompressible Euler equations on the whole space. Furthermore, the rate of convergence is also obtained.Yang JianweiLiu MengyuHao HuiyunDe Gruyterarticleviscous shallow water equationsincompressible euler equationslow froude number limitinviscid limit35b2535q3576b15MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 531-539 (2021)
institution DOAJ
collection DOAJ
language EN
topic viscous shallow water equations
incompressible euler equations
low froude number limit
inviscid limit
35b25
35q35
76b15
Mathematics
QA1-939
spellingShingle viscous shallow water equations
incompressible euler equations
low froude number limit
inviscid limit
35b25
35q35
76b15
Mathematics
QA1-939
Yang Jianwei
Liu Mengyu
Hao Huiyun
Inviscid, zero Froude number limit of the viscous shallow water system
description In this paper, we study the inviscid and zero Froude number limits of the viscous shallow water system. We prove that the limit system is represented by the incompressible Euler equations on the whole space. Furthermore, the rate of convergence is also obtained.
format article
author Yang Jianwei
Liu Mengyu
Hao Huiyun
author_facet Yang Jianwei
Liu Mengyu
Hao Huiyun
author_sort Yang Jianwei
title Inviscid, zero Froude number limit of the viscous shallow water system
title_short Inviscid, zero Froude number limit of the viscous shallow water system
title_full Inviscid, zero Froude number limit of the viscous shallow water system
title_fullStr Inviscid, zero Froude number limit of the viscous shallow water system
title_full_unstemmed Inviscid, zero Froude number limit of the viscous shallow water system
title_sort inviscid, zero froude number limit of the viscous shallow water system
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/2fd28990933f4c10a9dc14bd8b2f00f1
work_keys_str_mv AT yangjianwei inviscidzerofroudenumberlimitoftheviscousshallowwatersystem
AT liumengyu inviscidzerofroudenumberlimitoftheviscousshallowwatersystem
AT haohuiyun inviscidzerofroudenumberlimitoftheviscousshallowwatersystem
_version_ 1718371593835511808