Inviscid, zero Froude number limit of the viscous shallow water system
In this paper, we study the inviscid and zero Froude number limits of the viscous shallow water system. We prove that the limit system is represented by the incompressible Euler equations on the whole space. Furthermore, the rate of convergence is also obtained.
Guardado en:
Autores principales: | Yang Jianwei, Liu Mengyu, Hao Huiyun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fd28990933f4c10a9dc14bd8b2f00f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Approximate nonradial solutions for the Lane-Emden problem in the ball
por: Fazekas Borbála, et al.
Publicado: (2021) -
A Family of Stationary Solutions to the Euler Equations and Generalized Solutions
por: CONCEIÇÃO PRECIOSO,JULIANA
Publicado: (2010) -
Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation
por: Wan Haitao, et al.
Publicado: (2021) -
On non-resistive limit of 1D MHD equations with no vacuum at infinity
por: Li Zilai, et al.
Publicado: (2021) -
Quasi-stability and continuity of attractors for nonlinear system of wave equations
por: Freitas M. M., et al.
Publicado: (2021)