Directional excitation of surface plasmon using multi-mode interference in an aperture
Abstract Plasmonics is a promising technology that can find many applications in nanophotonics and biosensing. Local excitation of surface plasmons with high directionality is required for many of these applications. We demonstrate that by controlling the interference of light in a metal slot with t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fd4e512ac8f40c59fb04647a8278285 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2fd4e512ac8f40c59fb04647a8278285 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2fd4e512ac8f40c59fb04647a82782852021-12-02T14:06:56ZDirectional excitation of surface plasmon using multi-mode interference in an aperture10.1038/s41598-020-78594-72045-2322https://doaj.org/article/2fd4e512ac8f40c59fb04647a82782852021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78594-7https://doaj.org/toc/2045-2322Abstract Plasmonics is a promising technology that can find many applications in nanophotonics and biosensing. Local excitation of surface plasmons with high directionality is required for many of these applications. We demonstrate that by controlling the interference of light in a metal slot with the adjustment of the angle of incidence, it is possible to achieve highly directional surface plasmon excitation. Our numerical analysis of the structure showing a strong directionality of excited surface plasmon is confirmed by near field scanning measurements. The proposed structure can be useful for many applications including excitation of plasmonic waveguides, nanolithography, and optical sensing. To illustrate its usefulness, we experimentally demonstrate that it can be used for highly directional excitation of a dielectric loaded plasmonic waveguide. We also propose a simple structure for surface plasmon interference lithography capable of providing high image contrast using this scheme.M. Z. AlamZ. YangM. Sheik-BahaeJ. S. AitchisonM. MojahediNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q M. Z. Alam Z. Yang M. Sheik-Bahae J. S. Aitchison M. Mojahedi Directional excitation of surface plasmon using multi-mode interference in an aperture |
description |
Abstract Plasmonics is a promising technology that can find many applications in nanophotonics and biosensing. Local excitation of surface plasmons with high directionality is required for many of these applications. We demonstrate that by controlling the interference of light in a metal slot with the adjustment of the angle of incidence, it is possible to achieve highly directional surface plasmon excitation. Our numerical analysis of the structure showing a strong directionality of excited surface plasmon is confirmed by near field scanning measurements. The proposed structure can be useful for many applications including excitation of plasmonic waveguides, nanolithography, and optical sensing. To illustrate its usefulness, we experimentally demonstrate that it can be used for highly directional excitation of a dielectric loaded plasmonic waveguide. We also propose a simple structure for surface plasmon interference lithography capable of providing high image contrast using this scheme. |
format |
article |
author |
M. Z. Alam Z. Yang M. Sheik-Bahae J. S. Aitchison M. Mojahedi |
author_facet |
M. Z. Alam Z. Yang M. Sheik-Bahae J. S. Aitchison M. Mojahedi |
author_sort |
M. Z. Alam |
title |
Directional excitation of surface plasmon using multi-mode interference in an aperture |
title_short |
Directional excitation of surface plasmon using multi-mode interference in an aperture |
title_full |
Directional excitation of surface plasmon using multi-mode interference in an aperture |
title_fullStr |
Directional excitation of surface plasmon using multi-mode interference in an aperture |
title_full_unstemmed |
Directional excitation of surface plasmon using multi-mode interference in an aperture |
title_sort |
directional excitation of surface plasmon using multi-mode interference in an aperture |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/2fd4e512ac8f40c59fb04647a8278285 |
work_keys_str_mv |
AT mzalam directionalexcitationofsurfaceplasmonusingmultimodeinterferenceinanaperture AT zyang directionalexcitationofsurfaceplasmonusingmultimodeinterferenceinanaperture AT msheikbahae directionalexcitationofsurfaceplasmonusingmultimodeinterferenceinanaperture AT jsaitchison directionalexcitationofsurfaceplasmonusingmultimodeinterferenceinanaperture AT mmojahedi directionalexcitationofsurfaceplasmonusingmultimodeinterferenceinanaperture |
_version_ |
1718391953194745856 |