MiR-124 and miR-506 are involved in the decline of protein C in children with extra-hepatic portal vein obstruction

Abstract The deficiency of protein C (PROC) can be partly rescued by Rex shunt through restoring portal blood flow in children with extra-hepatic portal venous obstruction (EHPVO). However, the decline of PROC is still found in some patients with a normal portal blood flow after Rex shunt. The aim o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jin-Shan Zhang, Long Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2fdc9070a78145a9b00169c2e7bacf1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The deficiency of protein C (PROC) can be partly rescued by Rex shunt through restoring portal blood flow in children with extra-hepatic portal venous obstruction (EHPVO). However, the decline of PROC is still found in some patients with a normal portal blood flow after Rex shunt. The aim of this study was to identify the candidate miRNAs involving in the decline of PROC and their mechanism. The protein level of PROC was detected by the ELISA assay, and was compared between sick and healthy groups. The expressions of miRNAs and PROC mRNA were measured using qRT-PCR, and were compared between sick and healthy groups. The correlation between PROC and candidate miRNAs was analysed by a Pearson correlation analysis to identify the most significant miRNAs. The expression of PROC mRNA was detected by qRT-PCR in HL-7702 and LX-2 cells tansfected with miRNAs mimics or inhibitors and negative control (NC) mimics, which was compared among the different groups. The rates of liver cells’ proliferation and apoptosis were detected in HL-7702 and LX-2 cells tansfected with miRNAs mimics or inhibitors or with overexpressing PROC and negative control mimics by CKK8 assay and flow cytometry, which were compared among the different groups. The expressions of COX-2 and VEGF were measured by qRT-PCR, and were compared between the miRNAs groups and NC group. Western blot was assayed for detecting the protein levels of PROC, COX-2, VEGF, Bcl-2 and Bax, which were compared between the miRNAs groups and NC group. The expression of PROC mRNA was lower, and the expressions of miR-506-3p and miR-124-3p were higher in children with EHPVO than healthy group. PROC mRNA was negatively correlated with the expression of miR-506-3p and miR-124-3p. Compared to the NC group, the transcription activity of PROC was lower after exposure of miR-506 and miR-124 mimics in HL-7702 and LX-2 cells, but this phenomenon was reversed after inhibiting miR-506 and miR-124. The rate of cell proliferation was lower after exposure of miR-506 and miR-124 than the NC group, which was increased after inhibiting miR-506 and miR-124 in HL-7702 cells and overexpressing PROC in LX-2 cells. The apoptotic rate was higher after exposure of miR-506 and miR-124 than the NC group, which was decreased after inhibiting miR-506 and miR-124 in HL-7702 cells and overexpressing PROC in LX-2 cells. The mRNA levels of COX-2 and VEGF were significantly higher after exposure of miR-506 and miR-124 mimics than those in the NC group. The protein levels of PROC and Bcl-2 were down-regulated, and the levels of COX-2, Bax and VEGF were up-regulated after exposure of miR-506 and miR-124 in HL-7702 cells, but this phenomenon was reversed after inhibiting miR-506 and miR-124. MiR-506-3p and miR-124-3p may involve in the decline of PROC in protein and transcriptional level, in which the anti-proliferation and pro-apoptosis role of miR-506-3p and miR-124-3p for liver cells may involve in this mechanism.