Comparison and Explanation of Forecasting Algorithms for Energy Time Series
In this work, energy time series forecasting competitions from the Schneider Company, the Kaggle Online platform, and the American society ASHRAE were considered. These competitions include power generation and building energy consumption forecasts. The datasets used in these competitions are based...
Guardado en:
Autores principales: | Yuyi Zhang, Ruimin Ma, Jing Liu, Xiuxiu Liu, Ovanes Petrosian, Kirill Krinkin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fe302a156b44f2b864533cda3e588c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension
por: Francisco S. Marcondes, et al.
Publicado: (2021) -
Understanding, Explanation, and Active Inference
por: Thomas Parr, et al.
Publicado: (2021) -
Towards Optimal Supercomputer Energy Consumption Forecasting Method
por: Jiří Tomčala
Publicado: (2021) -
Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
por: Ari Yair Barrera-Animas, et al.
Publicado: (2022) -
Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting
por: Xiangyi Meng, et al.
Publicado: (2021)