Comparison and Explanation of Forecasting Algorithms for Energy Time Series
In this work, energy time series forecasting competitions from the Schneider Company, the Kaggle Online platform, and the American society ASHRAE were considered. These competitions include power generation and building energy consumption forecasts. The datasets used in these competitions are based...
Enregistré dans:
| Auteurs principaux: | Yuyi Zhang, Ruimin Ma, Jing Liu, Xiuxiu Liu, Ovanes Petrosian, Kirill Krinkin |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/2fe302a156b44f2b864533cda3e588c2 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension
par: Francisco S. Marcondes, et autres
Publié: (2021) -
Understanding, Explanation, and Active Inference
par: Thomas Parr, et autres
Publié: (2021) -
Towards Optimal Supercomputer Energy Consumption Forecasting Method
par: Jiří Tomčala
Publié: (2021) -
Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
par: Ari Yair Barrera-Animas, et autres
Publié: (2022) -
Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting
par: Xiangyi Meng, et autres
Publié: (2021)