Multi-scale Xception based depthwise separable convolution for single image super-resolution.
The main target of Single image super-resolution is to recover high-quality or high-resolution image from degraded version of low-quality or low-resolution image. Recently, deep learning-based approaches have achieved significant performance in image super-resolution tasks. However, existing approac...
Guardado en:
Autores principales: | Wazir Muhammad, Supavadee Aramvith, Takao Onoye |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fe902e341ae403db0d00aae30ccb45c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A multi-scale gated multi-head attention depthwise separable CNN model for recognizing COVID-19
por: Geng Hong, et al.
Publicado: (2021) -
Fault Line Selection Method Based on Transfer Learning Depthwise Separable Convolutional Neural Network
por: Haixia Zhang, et al.
Publicado: (2021) -
A Wavelet-Based Asymmetric Convolution Network for Single Image Super-Resolution
por: Wanxu Zhang, et al.
Publicado: (2021) -
Inverse renormalization group based on image super-resolution using deep convolutional networks
por: Kenta Shiina, et al.
Publicado: (2021) -
Wavelet Frequency Separation Attention Network for Chest X-ray Image Super-Resolution
por: Yue Yu, et al.
Publicado: (2021)