A Method Based on Artificial Intelligence To Fully Automatize The Evaluation of Bovine Blastocyst Images
Abstract Morphological analysis is the standard method of assessing embryo quality; however, its inherent subjectivity tends to generate discrepancies among evaluators. Using genetic algorithms and artificial neural networks (ANNs), we developed a new method for embryo analysis that is more robust a...
Guardado en:
Autores principales: | José Celso Rocha, Felipe José Passalia, Felipe Delestro Matos, Maria Beatriz Takahashi, Diego de Souza Ciniciato, Marc Peter Maserati, Mayra Fernanda Alves, Tamie Guibu de Almeida, Bruna Lopes Cardoso, Andrea Cristina Basso, Marcelo Fábio Gouveia Nogueira |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fe988d99301483d8ada2e554365d672 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Oxamflatin significantly improves nuclear reprogramming, blastocyst quality, and in vitro development of bovine SCNT embryos.
por: Jianmin Su, et al.
Publicado: (2011) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Multistage iterative fully automatic partitioning in water distribution systems
por: Tianwei Mu, et al.
Publicado: (2021) -
Lipid profile of bovine grade-1 blastocysts produced either in vivo or in vitro before and after slow freezing process
por: Sarah Janati Idrissi, et al.
Publicado: (2021) -
A Fully-Automatic Gap Filling Approach for Motion Capture Trajectories
por: Diana Gomes, et al.
Publicado: (2021)