Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity
Abstract Human age estimation is an important and difficult challenge. Different biomarkers and numerous approaches have been studied for biological age estimation, each with its advantages and limitations. In this work, we investigate whether physical activity can be exploited for biological age es...
Guardado en:
Autores principales: | Syed Ashiqur Rahman, Donald A. Adjeroh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2fea9bf31a45448fb71f30dd4af6395c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short-term prediction of wind power density using convolutional LSTM network
por: Gupta Deepak, et al.
Publicado: (2021) -
Combined deep CNN–LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features
por: Da Un Jeong, et al.
Publicado: (2021) -
Deep Bidirectional LSTM Network Learning-Based Sentiment Analysis for Arabic Text
por: Elfaik Hanane, et al.
Publicado: (2020) -
Weakly Supervised Video Anomaly Detection Based on 3D Convolution and LSTM
por: Zhen Ma, et al.
Publicado: (2021) -
A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition
por: Huiyun Zhang, et al.
Publicado: (2021)