Toward the accurate estimation of elliptical side orifice discharge coefficient applying two rigorous kernel-based data-intelligence paradigms
Abstract In the present study, two kernel-based data-intelligence paradigms, namely, Gaussian Process Regression (GPR) and Kernel Extreme Learning Machine (KELM) along with Generalized Regression Neural Network (GRNN) and Response Surface Methodology (RSM), as the validated schemes, employed to prec...
Guardado en:
Autores principales: | Masoud Karbasi, Mehdi Jamei, Iman Ahmadianfar, Amin Asadi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2ff497319f394f2094fc041fb8ac6c95 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Formation of side discharges in dielectric barrier discharge
por: Weili Fan, et al.
Publicado: (2017) -
Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems
por: Leonardi Salvatore, et al.
Publicado: (2021) -
Rigorous Statistical Methods for Rigorous Microbiome Science
por: Amy D. Willis
Publicado: (2019) -
Lash Impaction in Meibomian Gland Orifice
por: Mansour AM, et al.
Publicado: (2020) -
Franc Ducros, ostinato rigore
por: Jorge Esquinca
Publicado: (2013)