Toward the accurate estimation of elliptical side orifice discharge coefficient applying two rigorous kernel-based data-intelligence paradigms

Abstract In the present study, two kernel-based data-intelligence paradigms, namely, Gaussian Process Regression (GPR) and Kernel Extreme Learning Machine (KELM) along with Generalized Regression Neural Network (GRNN) and Response Surface Methodology (RSM), as the validated schemes, employed to prec...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Masoud Karbasi, Mehdi Jamei, Iman Ahmadianfar, Amin Asadi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2ff497319f394f2094fc041fb8ac6c95
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!