Toward the accurate estimation of elliptical side orifice discharge coefficient applying two rigorous kernel-based data-intelligence paradigms

Abstract In the present study, two kernel-based data-intelligence paradigms, namely, Gaussian Process Regression (GPR) and Kernel Extreme Learning Machine (KELM) along with Generalized Regression Neural Network (GRNN) and Response Surface Methodology (RSM), as the validated schemes, employed to prec...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Masoud Karbasi, Mehdi Jamei, Iman Ahmadianfar, Amin Asadi
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/2ff497319f394f2094fc041fb8ac6c95
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!