Pop-In Identification in Nanoindentation Curves with Deep Learning Algorithms
High–speed nanoindentation rapidly generates large datasets, opening the door for advanced data analysis methods such as the resources available in artificial intelligence. The present study addresses the problem of differentiating load–displacement curves presenting pop-in, slope changes, or instab...
Guardado en:
Autores principales: | Stephania Kossman, Maxence Bigerelle |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3010fedbaad04314993b940bd1bdd3cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Instrumented Nanoindentation Tests Applied to Bulk Metallic Materials: From Calibration Issue to Pile-Up Phenomena
por: Marcello Cabibbo
Publicado: (2021) -
An In-Situ Electrochemical Nanoindentation (ECNI) Study on the Effect of Hydrogen on the Mechanical Properties of 316L Austenitic Stainless Steel
por: Adina Basa, et al.
Publicado: (2021) -
Twinning-Induced Abnormal Strain Rate Sensitivity and Indentation Creep Behavior in Nanocrystalline Mg Alloy
por: Shilun Yu, et al.
Publicado: (2021) -
Effect of Indentation Load on Nanomechanical Properties Measured in a Multiphase Boride Layer
por: Piotr Dziarski, et al.
Publicado: (2021) -
On the Hardness and Elastic Modulus of Phases in SiC-Reinforced Al Composite: Role of La and Ce Addition
por: Andong Du, et al.
Publicado: (2021)