Tsallis generalized entropy for Gaussian mixture model parameter estimation on brain segmentation application
Among statistical models, Gaussian Mixture Models (GMMs) have been used in numerous applications to model the data in which a mixture of Gaussian curves fits them. Several methods have been introduced to estimate the optimum parameters to a GMM fitted to the data. The accuracy of such estimation met...
Guardado en:
Autores principales: | Mehran Azimbagirad, Luiz Otavio Murta Junior |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30216875707c468684c84f1087a1c533 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On Conditional Tsallis Entropy
por: Andreia Teixeira, et al.
Publicado: (2021) -
Tsallis entropy on fractal sets
por: Alireza Khalili Golmankhaneh
Publicado: (2021) -
Tight and Scalable Side-Channel Attack Evaluations through Asymptotically Optimal Massey-like Inequalities on Guessing Entropy
por: Andrei Tănăsescu, et al.
Publicado: (2021) -
Entropy
Publicado: (1999) -
A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario
por: Aranzubia,Solange, et al.
Publicado: (2018)