Another pedagogy for mixed-integer Gomory
We present a version of GMI (Gomory mixed-integer) cuts in a way so that they are derived with respect to a “dual form” mixed-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. This follows the general scheme of He and Lee, who d...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3030c8f5d9d94635b4d8ef0752cfb254 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We present a version of GMI (Gomory mixed-integer) cuts in a way so that they are derived with respect to a “dual form” mixed-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. This follows the general scheme of He and Lee, who did the case of Gomory pure-integer cuts. Our input mixed-integer problem is not in standard form, and so our cuts are derived rather differently from how they are normally derived. A convenient way to develop GMI cuts is from MIR (mixed-integer rounding) cuts, which are developed from 2-dimensional BMI (basic mixed-integer) cuts, which involve a nonnegative continuous variable and an integer variable. The non-negativity of the continuous variable is not the right tool for us, as our starting point (the “dual form” mixed-integer optimization problem) has no non-negativity. So we work out a different 2-dimensional starting point, a pair of somewhat arbitrary inequalities in one continuous and one integer variable. In the end, we follow the approach of He and Lee, getting now a finitely converging primal simplex column-generation algorithm for mixed-integer optimization problems. |
---|