Hyers-Ulam stability of isometries on bounded domains
More than 20 years after Fickett attempted to prove the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} in 1981, Alestalo et al. [Isometric approximation, Israel J. Math. 125 (2001), 61–82] and Väisälä [Isometric approximation property in Euclidean spaces, Israe...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/303da22ab7f54314847dffa5c4cd0e73 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | More than 20 years after Fickett attempted to prove the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} in 1981, Alestalo et al. [Isometric approximation, Israel J. Math. 125 (2001), 61–82] and Väisälä [Isometric approximation property in Euclidean spaces, Israel J. Math. 128 (2002), 127] improved Fickett’s theorem significantly. In this paper, we will improve Fickett’s theorem by proving the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} using a more intuitive and more efficient approach that differs greatly from the methods used by Alestalo et al. and Väisälä. |
---|