Hyers-Ulam stability of isometries on bounded domains

More than 20 years after Fickett attempted to prove the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} in 1981, Alestalo et al. [Isometric approximation, Israel J. Math. 125 (2001), 61–82] and Väisälä [Isometric approximation property in Euclidean spaces, Israe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jung Soon-Mo
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/303da22ab7f54314847dffa5c4cd0e73
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:More than 20 years after Fickett attempted to prove the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} in 1981, Alestalo et al. [Isometric approximation, Israel J. Math. 125 (2001), 61–82] and Väisälä [Isometric approximation property in Euclidean spaces, Israel J. Math. 128 (2002), 127] improved Fickett’s theorem significantly. In this paper, we will improve Fickett’s theorem by proving the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} using a more intuitive and more efficient approach that differs greatly from the methods used by Alestalo et al. and Väisälä.