Hyers-Ulam stability of isometries on bounded domains

More than 20 years after Fickett attempted to prove the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} in 1981, Alestalo et al. [Isometric approximation, Israel J. Math. 125 (2001), 61–82] and Väisälä [Isometric approximation property in Euclidean spaces, Israe...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Jung Soon-Mo
Format: article
Langue:EN
Publié: De Gruyter 2021
Sujets:
Accès en ligne:https://doaj.org/article/303da22ab7f54314847dffa5c4cd0e73
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:More than 20 years after Fickett attempted to prove the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} in 1981, Alestalo et al. [Isometric approximation, Israel J. Math. 125 (2001), 61–82] and Väisälä [Isometric approximation property in Euclidean spaces, Israel J. Math. 128 (2002), 127] improved Fickett’s theorem significantly. In this paper, we will improve Fickett’s theorem by proving the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} using a more intuitive and more efficient approach that differs greatly from the methods used by Alestalo et al. and Väisälä.