Hyers-Ulam stability of isometries on bounded domains
More than 20 years after Fickett attempted to prove the Hyers-Ulam stability of isometries defined on bounded subsets of Rn{{\mathbb{R}}}^{n} in 1981, Alestalo et al. [Isometric approximation, Israel J. Math. 125 (2001), 61–82] and Väisälä [Isometric approximation property in Euclidean spaces, Israe...
Guardado en:
Autor principal: | Jung Soon-Mo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/303da22ab7f54314847dffa5c4cd0e73 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyers-Ulam stability of n th order linear differential equation
por: Murali,R., et al.
Publicado: (2019) -
On the Mazur-Ulam theorem for Fréchet algebras
por: Zivari-Kazempour,A., et al.
Publicado: (2020) -
Hyers-Ulam stability of an additive-quadratic functional equation
por: Govindan,Vediyappan, et al.
Publicado: (2020) -
Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation via Laplace Transform
por: Daniela Marian
Publicado: (2021) -
GENERALIZED ULAM-HYERS STABILITIES OF QUARTIC DERIVATIONS ON BANACH ALGEBRAS
por: Eshaghi Gordji,M, et al.
Publicado: (2010)