Micro-RNA Implications in Type-1 Diabetes Mellitus: A Review of Literature

Type-1 diabetes mellitus (T1DM) is one of the most well-defined and complex metabolic disorders, characterized by hyperglycemia, with a constantly increasing incidence in children and adolescents. While current knowledge regarding the molecules related to the pathogenesis and diagnosis of T1DM is va...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kosmas Margaritis, Georgia Margioula-Siarkou, Styliani Giza, Eleni P. Kotanidou, Vasiliki Regina Tsinopoulou, Athanasios Christoforidis, Assimina Galli-Tsinopoulou
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/303f338fd9ff49a8be69d072cfb8a551
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Type-1 diabetes mellitus (T1DM) is one of the most well-defined and complex metabolic disorders, characterized by hyperglycemia, with a constantly increasing incidence in children and adolescents. While current knowledge regarding the molecules related to the pathogenesis and diagnosis of T1DM is vast, the discovery of new molecules, such as micro ribonucleic acids (micro-RNAs, miRNAs), as well as their interactions with T1DM, has spurred novel prospects in the diagnosis of the disease. This review aims at summarizing current knowledge regarding miRNAs’ biosynthesis and action pathways and their role as gene expression regulators in T1DM. MiRNAs follow a complex biosynthesis pathway, including cleaving and transport from nucleus to cytoplasm. After assembly of their final form, they inhibit translation or cause messenger RNA (mRNA) degradation, resulting in the obstruction of protein synthesis. Many studies have reported miRNA involvement in T1DM pathogenesis, mainly through interference with pancreatic b-cell function, insulin production and secretion. They are also found to contribute to β-cell destruction, as they aid in the production of autoreactive agents. Due to their elevated accumulation in various biological specimens, as well as their involvement in T1DM pathogenesis, their role as biomarkers in early preclinical T1DM diagnosis is widely hypothesized, with future studies concerning their diagnostic value deemed a necessity.