EEG in game user analysis: A framework for expertise classification during gameplay.
Video games have become a ubiquitous part of demographically diverse cultures. Numerous studies have focused on analyzing the cognitive aspects involved in game playing that could help in providing an optimal gaming experience by improving video game design. To this end, we present a framework for c...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/303f7f6b3dd2481a856da3dd5cf6a32f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:303f7f6b3dd2481a856da3dd5cf6a32f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:303f7f6b3dd2481a856da3dd5cf6a32f2021-12-02T20:05:20ZEEG in game user analysis: A framework for expertise classification during gameplay.1932-620310.1371/journal.pone.0246913https://doaj.org/article/303f7f6b3dd2481a856da3dd5cf6a32f2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0246913https://doaj.org/toc/1932-6203Video games have become a ubiquitous part of demographically diverse cultures. Numerous studies have focused on analyzing the cognitive aspects involved in game playing that could help in providing an optimal gaming experience by improving video game design. To this end, we present a framework for classifying the game player's expertise level using wearable electroencephalography (EEG) headset. We hypothesize that expert and novice players' brain activity is different, which can be classified using frequency domain features extracted from EEG signals of the game player. A systematic channel reduction approach is presented using a correlation-based attribute evaluation method. This approach lead us in identifying two significant EEG channels, i.e., AF3 and P7, among fourteen channels available in Emotiv EPOC headset. In particular, features extracted from these two EEG channels contributed the most to the video game player's expertise level classification. This finding is validated by performing statistical analysis (t-test) over the extracted features. Moreover, among multiple classifiers used, K-nearest neighbor is the best classifier in classifying game player's expertise level with a classification accuracy of up to 98.04% (without data balancing) and 98.33% (with data balancing).Tehmina HafeezSanay Muhammad Umar SaeedAamir ArsalanSyed Muhammad AnwarMuhammad Usman AshrafKhalid AlsubhiPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 6, p e0246913 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Tehmina Hafeez Sanay Muhammad Umar Saeed Aamir Arsalan Syed Muhammad Anwar Muhammad Usman Ashraf Khalid Alsubhi EEG in game user analysis: A framework for expertise classification during gameplay. |
description |
Video games have become a ubiquitous part of demographically diverse cultures. Numerous studies have focused on analyzing the cognitive aspects involved in game playing that could help in providing an optimal gaming experience by improving video game design. To this end, we present a framework for classifying the game player's expertise level using wearable electroencephalography (EEG) headset. We hypothesize that expert and novice players' brain activity is different, which can be classified using frequency domain features extracted from EEG signals of the game player. A systematic channel reduction approach is presented using a correlation-based attribute evaluation method. This approach lead us in identifying two significant EEG channels, i.e., AF3 and P7, among fourteen channels available in Emotiv EPOC headset. In particular, features extracted from these two EEG channels contributed the most to the video game player's expertise level classification. This finding is validated by performing statistical analysis (t-test) over the extracted features. Moreover, among multiple classifiers used, K-nearest neighbor is the best classifier in classifying game player's expertise level with a classification accuracy of up to 98.04% (without data balancing) and 98.33% (with data balancing). |
format |
article |
author |
Tehmina Hafeez Sanay Muhammad Umar Saeed Aamir Arsalan Syed Muhammad Anwar Muhammad Usman Ashraf Khalid Alsubhi |
author_facet |
Tehmina Hafeez Sanay Muhammad Umar Saeed Aamir Arsalan Syed Muhammad Anwar Muhammad Usman Ashraf Khalid Alsubhi |
author_sort |
Tehmina Hafeez |
title |
EEG in game user analysis: A framework for expertise classification during gameplay. |
title_short |
EEG in game user analysis: A framework for expertise classification during gameplay. |
title_full |
EEG in game user analysis: A framework for expertise classification during gameplay. |
title_fullStr |
EEG in game user analysis: A framework for expertise classification during gameplay. |
title_full_unstemmed |
EEG in game user analysis: A framework for expertise classification during gameplay. |
title_sort |
eeg in game user analysis: a framework for expertise classification during gameplay. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/303f7f6b3dd2481a856da3dd5cf6a32f |
work_keys_str_mv |
AT tehminahafeez eegingameuseranalysisaframeworkforexpertiseclassificationduringgameplay AT sanaymuhammadumarsaeed eegingameuseranalysisaframeworkforexpertiseclassificationduringgameplay AT aamirarsalan eegingameuseranalysisaframeworkforexpertiseclassificationduringgameplay AT syedmuhammadanwar eegingameuseranalysisaframeworkforexpertiseclassificationduringgameplay AT muhammadusmanashraf eegingameuseranalysisaframeworkforexpertiseclassificationduringgameplay AT khalidalsubhi eegingameuseranalysisaframeworkforexpertiseclassificationduringgameplay |
_version_ |
1718375471573368832 |