The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development

Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assess...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ella Thomson, Ruby Dawson, Chee Ho H’ng, Fatwa Adikusuma, Sandra Piltz, Paul Q. Thomas
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/30456a6e72dd44a8aa48b2c78277475b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:30456a6e72dd44a8aa48b2c78277475b
record_format dspace
spelling oai:doaj.org-article:30456a6e72dd44a8aa48b2c78277475b2021-11-11T07:51:49ZThe Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development1932-6203https://doaj.org/article/30456a6e72dd44a8aa48b2c78277475b2021-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570527/?tool=EBIhttps://doaj.org/toc/1932-6203Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assessed is relatively low. While enhancers have traditionally been studied using reporter assays, this approach does not characterise their contribution to endogenous gene expression. We have studied the murine Nestin (Nes) intron 2 enhancer, which is widely used to direct exogenous gene expression within neural progenitor cells in cultured cells and in vivo. We generated CRISPR deletions of the enhancer region in mice and assessed their impact on Nes expression during embryonic development. Loss of the Nes neural enhancer significantly reduced Nes expression in the developing CNS by as much as 82%. By assessing NES protein localization, we also show that this enhancer region contains repressor element(s) that inhibit Nes expression within the vasculature. Previous reports have stated that Nes is an essential gene, and its loss causes embryonic lethality. We also generated 2 independent Nes null lines and show that both develop without any obvious phenotypic effects. Finally, through crossing of null and enhancer deletion mice we provide evidence of trans-chromosomal interaction of the Nes enhancer and promoter.Ella ThomsonRuby DawsonChee Ho H’ngFatwa AdikusumaSandra PiltzPaul Q. ThomasPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ella Thomson
Ruby Dawson
Chee Ho H’ng
Fatwa Adikusuma
Sandra Piltz
Paul Q. Thomas
The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development
description Enhancers are vitally important during embryonic development to control the spatial and temporal expression of genes. Recently, large scale genome projects have identified a vast number of putative developmental regulatory elements. However, the proportion of these that have been functionally assessed is relatively low. While enhancers have traditionally been studied using reporter assays, this approach does not characterise their contribution to endogenous gene expression. We have studied the murine Nestin (Nes) intron 2 enhancer, which is widely used to direct exogenous gene expression within neural progenitor cells in cultured cells and in vivo. We generated CRISPR deletions of the enhancer region in mice and assessed their impact on Nes expression during embryonic development. Loss of the Nes neural enhancer significantly reduced Nes expression in the developing CNS by as much as 82%. By assessing NES protein localization, we also show that this enhancer region contains repressor element(s) that inhibit Nes expression within the vasculature. Previous reports have stated that Nes is an essential gene, and its loss causes embryonic lethality. We also generated 2 independent Nes null lines and show that both develop without any obvious phenotypic effects. Finally, through crossing of null and enhancer deletion mice we provide evidence of trans-chromosomal interaction of the Nes enhancer and promoter.
format article
author Ella Thomson
Ruby Dawson
Chee Ho H’ng
Fatwa Adikusuma
Sandra Piltz
Paul Q. Thomas
author_facet Ella Thomson
Ruby Dawson
Chee Ho H’ng
Fatwa Adikusuma
Sandra Piltz
Paul Q. Thomas
author_sort Ella Thomson
title The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development
title_short The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development
title_full The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development
title_fullStr The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development
title_full_unstemmed The Nestin neural enhancer is essential for normal levels of endogenous Nestin in neuroprogenitors but is not required for embryo development
title_sort nestin neural enhancer is essential for normal levels of endogenous nestin in neuroprogenitors but is not required for embryo development
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/30456a6e72dd44a8aa48b2c78277475b
work_keys_str_mv AT ellathomson thenestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT rubydawson thenestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT cheehohng thenestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT fatwaadikusuma thenestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT sandrapiltz thenestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT paulqthomas thenestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT ellathomson nestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT rubydawson nestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT cheehohng nestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT fatwaadikusuma nestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT sandrapiltz nestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
AT paulqthomas nestinneuralenhancerisessentialfornormallevelsofendogenousnestininneuroprogenitorsbutisnotrequiredforembryodevelopment
_version_ 1718439296112787456