A cyclic learning approach for improving pre-stack seismic processing
Abstract Current seismic processing workflows in the oil and gas industry involve several interactions between different experts to optimize the overall data quality in various tasks, such as noise attenuation, velocity analysis and horizon picking. While many machine learning-based approaches have...
Guardado en:
Autores principales: | Dario Augusto Borges Oliveira, Daniela Szwarcman, Rodrigo da Silva Ferreira, Semen Zaytsev, Daniil Semin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3058d7ac66554cf2a714ebf9122e8ffb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pre-stack seismic density inversion in marine shale reservoirs in the southern Jiaoshiba area, Sichuan Basin, China
por: Yuan-Yin Zhang, et al.
Publicado: (2018) -
Simulation Based Approach for High-Throughput Stacking Processes in Battery Production
por: Alexander Müller, et al.
Publicado: (2021) -
Effect of Thermal Cyclic Loading on Stress-Strain Response and Fatigue Life of 3D Chip Stacking Structure
por: Liang Zhang, et al.
Publicado: (2021) -
Improved building sustainability in seismic zones
por: Arriagada D,Ricardo E
Publicado: (2019) -
Improvement in seismic performance of building with BRBs
por: Pawar R. S., et al.
Publicado: (2021)