Core-log integration and application of machine learning technique for better reservoir characterisation of Eocene carbonates, Indian offshore
Rock types, pore structures and permeability are essential petrophysical outputs, and they contribute considerably to the highest degree of uncertainty in reservoir characterisation. These factors have a strong influence on exploration and field development decisions. Core analysis is the best appro...
Guardado en:
Autores principales: | Ilius Mondal, Kumar Hemant Singh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
KeAi Communications Co., Ltd.
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/30596ac81ecd4231afd49dc00c6714be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sequence stratigraphic analysis and hydrocarbon prospectivity of AMO Field, deep offshore Niger Delta, Nigeria
por: Adeniyi Amodu, et al.
Publicado: (2022) -
Review on DC transmission systems for integrating large‐scale offshore wind farms
por: Zhengxuan Li, et al.
Publicado: (2021) -
Contents
Publicado: (2021) -
Guest Editorial: Special Section on Protection and Control of Smart Grid with High Penetration of Converter Interfaced Generation Resources
por: Juan M. Gers, et al.
Publicado: (2021) -
Measurement and monitoring of overhead transmission line sag in smart grid: A review
por: Ayman Uddin Mahin, et al.
Publicado: (2022)