Deep learning reveals 3D atherosclerotic plaque distribution and composition
Abstract Complications of atherosclerosis are the leading cause of morbidity and mortality worldwide. Various genetically modified mouse models are used to investigate disease trajectory with classical histology, currently the preferred methodology to elucidate plaque composition. Here, we show the...
Guardado en:
Autores principales: | Vanessa Isabell Jurtz, Grethe Skovbjerg, Casper Gravesen Salinas, Urmas Roostalu, Louise Pedersen, Jacob Hecksher-Sørensen, Bidda Rolin, Michael Nyberg, Martijn van de Bunt, Camilla Ingvorsen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/307dce623c614724b179921559a4ac86 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effect of captopril on post-infarction remodelling visualized by light sheet microscopy and echocardiography
por: Urmas Roostalu, et al.
Publicado: (2021) -
Correlation Between Calcification Characteristics of Carotid Atherosclerotic Plaque and Plaque Vulnerability
por: Xu X, et al.
Publicado: (2021) -
Adiponectin-coated nanoparticles for enhanced imaging of atherosclerotic plaques
por: Almer G, et al.
Publicado: (2011) -
Heme cytotoxicity is the consequence of endoplasmic reticulum stress in atherosclerotic plaque progression
por: Dávid Pethő, et al.
Publicado: (2021) -
Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques
por: Jeroen Baardman, et al.
Publicado: (2020)