A Complete Characterisation of Vertex-multiplications of Trees with Diameter 5
For a connected graph $G$, let $\mathscr{D}(G)$ be the family of strong orientations of $G$; and for any $D\in\mathscr{D}(G)$, we denote by $d(D)$ the diameter of $D$. The $\textit{orientation number}$ of $G$ is defined as $\bar{d}(G)=\min\{d(D)\mid D\in \mathscr{D}(G)\}$. In 2000, Koh and Tay intro...
Guardado en:
Autores principales: | Willie Wong, Eng Guan Tay |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Georgia Southern University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/307efe2ef1ed4e5b836a523f0dc7a636 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Vertex cover and edge-vertex domination in tres
por: Senthilkumar,B., et al.
Publicado: (2021) -
Graphs of edge-to-vertex detour number 2
por: Santhakumaran,A. P.
Publicado: (2021) -
Trees with vertex-edge roman domination number twice the domination number minus one
por: Naresh Kumar,H., et al.
Publicado: (2020) -
Complementary nil vertex edge dominating sets
por: Siva Rama Raju,S. V., et al.
Publicado: (2015) -
Total domination and vertex-edge domination in tres
por: Venkatakrishnan,Y. B., et al.
Publicado: (2019)